From 628bb27a5144a3765884c6c13fc1dd1655c80a93 Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Sun, 11 Feb 2018 15:29:52 +0800 Subject: [PATCH] refine prior_boxes --- python/paddle/v2/fluid/layers/__init__.py | 5 +- python/paddle/v2/fluid/layers/detection.py | 260 +++++++++++++++++++++ python/paddle/v2/fluid/layers/nn.py | 256 ++------------------ 3 files changed, 287 insertions(+), 234 deletions(-) create mode 100644 python/paddle/v2/fluid/layers/detection.py diff --git a/python/paddle/v2/fluid/layers/__init__.py b/python/paddle/v2/fluid/layers/__init__.py index a83dd3db74a..f4fb2ca2798 100644 --- a/python/paddle/v2/fluid/layers/__init__.py +++ b/python/paddle/v2/fluid/layers/__init__.py @@ -26,12 +26,15 @@ import device from device import * import math_op_patch from math_op_patch import * +import detection +from detection import * __all__ = [] +__all__ += math_op_patch.__all__ __all__ += nn.__all__ __all__ += io.__all__ __all__ += tensor.__all__ __all__ += control_flow.__all__ __all__ += ops.__all__ __all__ += device.__all__ -__all__ += math_op_patch.__all__ +__all__ += detection.__all__ diff --git a/python/paddle/v2/fluid/layers/detection.py b/python/paddle/v2/fluid/layers/detection.py new file mode 100644 index 00000000000..b0c25c11deb --- /dev/null +++ b/python/paddle/v2/fluid/layers/detection.py @@ -0,0 +1,260 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +All layers just related to the detection neural network. +""" + +from ..layer_helper import LayerHelper +from ..framework import Variable +from ..param_attr import ParamAttr +from ..framework import Variable +from layer_function_generator import autodoc +from tensor import concat +from nn import flatten +import math + +__all__ = [ + 'prior_box', + 'prior_boxes', +] + + +def prior_box(input, + image, + min_sizes, + max_sizes, + aspect_ratios, + variance, + flip=False, + clip=False, + step_w=0.0, + step_h=0.0, + offset=0.5, + name=None): + """ + **Prior_box** + + Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. + Each position of the input produce N prior boxes, N is determined by + the count of min_sizes, max_sizes and aspect_ratios, The size of the + box is in range(min_size, max_size) interval, which is generated in + sequence according to the aspect_ratios. + + Args: + input(variable): The input feature data of PriorBox, + the layout is NCHW. + image(variable): The input image data of PriorBox, the + layout is NCHW. + min_sizes(list): the min sizes of generated prior boxes. + max_sizes(list): the max sizes of generated prior boxes. + aspect_ratios(list): the aspect ratios of generated prior boxes. + variance(list): the variances to be encoded in prior boxes. + flip(bool, optional, default=False): Whether to flip aspect ratios. + clip(bool, optional, default=False)): Whether to clip + out-of-boundary boxes. + step_w(int, optional, default=0.0): Prior boxes step across + width, 0.0 for auto calculation. + step_h(int, optional, default=0.0): Prior boxes step across + height, 0.0 for auto calculation. + offset(float, optional, default=0.5): Prior boxes center offset. + name(str, optional, default=None): Name of the prior box layer. + + Returns: + boxes(variable): the output prior boxes of PriorBoxOp. The layout is + [H, W, num_priors, 4]. H is the height of input, W is the width + of input, num_priors is the box count of each position. Where num_priors = + len(aspect_ratios) * len(min_sizes) + len(max_sizes) + Variances(variable): the expanded variances of PriorBoxOp. The layout + is [H, W, num_priors, 4]. H is the height of input, W is the width + of input, num_priors is the box count of each position. Where num_priors = + len(aspect_ratios) * len(min_sizes) + len(max_sizes) + Examples: + .. code-block:: python + + data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32") + conv2d = fluid.layers.conv2d( + input=data, num_filters=2, filter_size=3) + box, var = fluid.layers.prior_box(conv2d, data, + min_size, max_size, aspect_ratio, + variance, flip, clip, + step_w, step_h, offset) + """ + helper = LayerHelper("prior_box", **locals()) + dtype = helper.input_dtype() + + box = helper.create_tmp_variable(dtype) + var = helper.create_tmp_variable(dtype) + helper.append_op( + type="prior_box", + inputs={"Input": input, + "Image": image}, + outputs={"Boxes": box, + "Variances": var}, + attrs={ + 'min_sizes': min_sizes, + 'max_sizes': max_sizes, + 'aspect_ratios': aspect_ratios, + 'variances': variance, + 'flip': flip, + 'clip': clip, + 'step_w': step_w, + 'step_h': step_h, + 'offset': offset + }) + return box, var + + +def prior_boxes(inputs, + image, + min_ratio, + max_ratio, + aspect_ratios, + base_size, + steps=None, + step_w=None, + step_h=None, + offset=0.5, + variance=[0.1, 0.1, 0.1, 0.1], + flip=False, + clip=False, + name=None): + """ + **Prior_boxes** + + Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. + Each position of the inputs produces many prior boxes respectly, the number + of prior boxes which is produced by inputs respectly is determined by + the count of min_ratio, max_ratio and aspect_ratios, The size of the + box is in range(min_ratio, max_ratio) interval, which is generated in + sequence according to the aspect_ratios. + + Args: + inputs(list): The list of input variables, the format of all variables is NCHW. + image(variable): The input image data of PriorBoxOp, the layout is NCHW. + min_ratio(int): the min ratio of generated prior boxes. + max_ratio(int): the max ratio of generated prior boxes. + aspect_ratios(list): the aspect ratios of generated prior boxes. + The length of input and aspect_ratios must be equal. + base_size(int): the base_size is used to get min_size and max_size + according to min_ratio and max_ratio. + step_w(list, optional, default=None): Prior boxes step across width. + If step_w[i] == 0.0, the prior boxes step across width of the inputs[i] + will be automatically calculated. + step_h(list, optional, default=None): Prior boxes step across height, + If step_h[i] == 0.0, the prior boxes step across height of the inputs[i] + will be automatically calculated. + offset(float, optional, default=0.5): Prior boxes center offset. + variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances + to be encoded in prior boxes. + flip(bool, optional, default=False): Whether to flip aspect ratios. + clip(bool, optional, default=False): Whether to clip out-of-boundary boxes. + name(str, optional, None): Name of the prior box layer. + + Returns: + boxes(variable): the output prior boxes of PriorBoxOp. The layout is + [num_priors, 4]. num_priors is the total box count of each + position of inputs. + Variances(variable): the expanded variances of PriorBoxOp. The layout + is [num_priors, 4]. num_priors is the total box count of each + position of inputs + + Examples: + .. code-block:: python + + prior_boxes( + inputs = [conv1, conv2, conv3, conv4, conv5, conv6], + image = data, + min_ratio = 20, # 0.20 + max_ratio = 90, # 0.90 + steps = [8., 16., 32., 64., 100., 300.], + aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]], + base_size = 300, + offset = 0.5, + variance = [0.1,0.1,0.1,0.1], + flip=True, + clip=True) + """ + assert isinstance(inputs, list), 'inputs should be a list.' + num_layer = len(inputs) + assert num_layer > 2 # TODO(zcd): currently, num_layer must be bigger than two. + + min_sizes = [] + max_sizes = [] + if num_layer > 2: + step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2))) + for ratio in xrange(min_ratio, max_ratio + 1, step): + min_sizes.append(base_size * ratio / 100.) + max_sizes.append(base_size * (ratio + step) / 100.) + min_sizes = [base_size * .10] + min_sizes + max_sizes = [base_size * .20] + max_sizes + + if step_h: + assert isinstance(step_h,list) and len(step_h) == num_layer, \ + 'step_h should be list and inputs and step_h should have same length' + if step_w: + assert isinstance(step_w,list) and len(step_w) == num_layer, \ + 'step_w should be list and inputs and step_w should have same length' + if steps: + assert isinstance(steps,list) and len(steps) == num_layer, \ + 'steps should be list and inputs and step_w should have same length' + step_w = steps + step_h = steps + if aspect_ratios: + assert isinstance(aspect_ratios, list) and len(aspect_ratios) == num_layer, \ + 'aspect_ratios should be list and inputs and aspect_ratios should ' \ + 'have same length' + + box_results = [] + var_results = [] + for i, input in enumerate(inputs): + min_size = min_sizes[i] + max_size = max_sizes[i] + aspect_ratio = [] + if not isinstance(min_size, list): + min_size = [min_size] + if not isinstance(max_size, list): + max_size = [max_size] + if aspect_ratios: + aspect_ratio = aspect_ratios[i] + if not isinstance(aspect_ratio, list): + aspect_ratio = [aspect_ratio] + + box, var = prior_box(input, image, min_size, max_size, aspect_ratio, + variance, flip, clip, step_w[i] + if step_w else 0.0, step_h[i] + if step_w else 0.0, offset) + + box_results.append(box) + var_results.append(var) + + if len(box_results) == 1: + box = box_results[0] + var = var_results[0] + else: + axis = 3 + reshaped_boxes = [] + reshaped_vars = [] + for i in range(len(box_results)): + reshaped_boxes += [flatten(box_results[i], axis=3)] + reshaped_vars += [flatten(var_results[i], axis=3)] + + helper = LayerHelper("concat", **locals()) + dtype = helper.input_dtype() + box = helper.create_tmp_variable(dtype) + var = helper.create_tmp_variable(dtype) + + box = concat(reshaped_boxes) + var = concat(reshaped_vars) + + return box, var diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index f0bcddaf9a4..4d2de38c35e 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -67,9 +67,8 @@ __all__ = [ 'beam_search', 'row_conv', 'reshape_with_axis', + 'flatten', 'multiplex', - 'prior_box', - 'prior_boxes', 'layer_norm', ] @@ -3149,242 +3148,33 @@ def reshape_with_axis(input, axis): return out -def prior_box(input, - image, - min_sizes, - max_sizes, - aspect_ratios, - variance, - flip=False, - clip=False, - step_w=0.0, - step_h=0.0, - offset=0.5, - name=None): +def flatten(input, axis=1): """ - **Prior_box** - - Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. - Each position of the input produce N prior boxes, N is determined by - the count of min_sizes, max_sizes and aspect_ratios, The size of the - box is in range(min_size, max_size) interval, which is generated in - sequence according to the aspect_ratios. - + **Flatten Layer** + ReshapeWithAxis is used to merge adjacent dimensions according to axis. Args: - input(variable): The input feature data of PriorBox, - the layout is NCHW. - image(variable): The input image data of PriorBox, the - layout is NCHW. - min_sizes(list): the min sizes of generated prior boxes. - max_sizes(list): the max sizes of generated prior boxes. - aspect_ratios(list): the aspect ratios of generated prior boxes. - variance(list): the variances to be encoded in prior boxes. - flip(bool, optional, default=False): Whether to flip aspect ratios. - clip(bool, optional, default=False)): Whether to clip - out-of-boundary boxes. - step_w(int, optional, default=0.0): Prior boxes step across - width, 0.0 for auto calculation. - step_h(int, optional, default=0.0): Prior boxes step across - height, 0.0 for auto calculation. - offset(float, optional, default=0.5): Prior boxes center offset. - name(str, optional, default=None): Name of the prior box layer. - + input(variable): The input tensor. + axis(int): Returns: - boxes(variable): the output prior boxes of PriorBoxOp. The layout is - [H, W, num_priors, 4]. H is the height of input, W is the width - of input, num_priors is the box count of each position. Where num_priors = - len(aspect_ratios) * len(min_sizes) + len(max_sizes) - Variances(variable): the expanded variances of PriorBoxOp. The layout - is [H, W, num_priors, 4]. H is the height of input, W is the width - of input, num_priors is the box count of each position. Where num_priors = - len(aspect_ratios) * len(min_sizes) + len(max_sizes) + Variable: A tensor variable. Examples: .. code-block:: python - - data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32") - conv2d = fluid.layers.conv2d( - input=data, num_filters=2, filter_size=3) - box, var = fluid.layers.prior_box(conv2d, data, - min_size, max_size, aspect_ratio, - variance, flip, clip, - step_w, step_h, offset) + x = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32") + reshaped = fluid.layers.reshape_with_axis(input=x, axis=2) + reshaped.shape + >> [-1, 1024] """ - helper = LayerHelper("prior_box", **locals()) - dtype = helper.input_dtype() - - box = helper.create_tmp_variable(dtype) - var = helper.create_tmp_variable(dtype) - helper.append_op( - type="prior_box", - inputs={"Input": input, - "Image": image}, - outputs={"Boxes": box, - "Variances": var}, - attrs={ - 'min_sizes': min_sizes, - 'max_sizes': max_sizes, - 'aspect_ratios': aspect_ratios, - 'variances': variance, - 'flip': flip, - 'clip': clip, - 'step_w': step_w, - 'step_h': step_h, - 'offset': offset - }) - return box, var - - -def prior_boxes(inputs, - image, - min_ratio, - max_ratio, - aspect_ratios, - base_size, - steps=None, - step_w=None, - step_h=None, - offset=0.5, - variance=[0.1, 0.1, 0.1, 0.1], - flip=False, - clip=False, - name=None): - """ - **Prior_boxes** - - Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. - Each position of the inputs produces many prior boxes respectly, the number - of prior boxes which is produced by inputs respectly is determined by - the count of min_ratio, max_ratio and aspect_ratios, The size of the - box is in range(min_ratio, max_ratio) interval, which is generated in - sequence according to the aspect_ratios. - - Args: - inputs(list): The list of input variables, the format of all variables is NCHW. - image(variable): The input image data of PriorBoxOp, the layout is NCHW. - min_ratio(int): the min ratio of generated prior boxes. - max_ratio(int): the max ratio of generated prior boxes. - aspect_ratios(list): the aspect ratios of generated prior boxes. - The length of input and aspect_ratios must be equal. - base_size(int): the base_size is used to get min_size and max_size - according to min_ratio and max_ratio. - step_w(list, optional, default=None): Prior boxes step across width. - If step_w[i] == 0.0, the prior boxes step across width of the inputs[i] - will be automatically calculated. - step_h(list, optional, default=None): Prior boxes step across height, - If step_h[i] == 0.0, the prior boxes step across height of the inputs[i] - will be automatically calculated. - offset(float, optional, default=0.5): Prior boxes center offset. - variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances - to be encoded in prior boxes. - flip(bool, optional, default=False): Whether to flip aspect ratios. - clip(bool, optional, default=False): Whether to clip out-of-boundary boxes. - name(str, optional, None): Name of the prior box layer. - - Returns: - boxes(variable): the output prior boxes of PriorBoxOp. The layout is - [num_priors, 4]. num_priors is the total box count of each - position of inputs. - Variances(variable): the expanded variances of PriorBoxOp. The layout - is [num_priors, 4]. num_priors is the total box count of each - position of inputs - - Examples: - .. code-block:: python + assert len(input.shape) > axis and axis > 0, \ + "the axis should be litter than input.shape's." + input_shape = input.shape - prior_boxes( - inputs = [conv1, conv2, conv3, conv4, conv5, conv6], - image = data, - min_ratio = 20, # 0.20 - max_ratio = 90, # 0.90 - steps = [8., 16., 32., 64., 100., 300.], - aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]], - base_size = 300, - offset = 0.5, - variance = [0.1,0.1,0.1,0.1], - flip=True, - clip=True) - """ - assert isinstance(inputs, list), 'inputs should be a list.' - num_layer = len(inputs) - assert num_layer > 2 # TODO(zcd): currently, num_layer must be bigger than two. - - min_sizes = [] - max_sizes = [] - if num_layer > 2: - step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2))) - for ratio in xrange(min_ratio, max_ratio + 1, step): - min_sizes.append(base_size * ratio / 100.) - max_sizes.append(base_size * (ratio + step) / 100.) - min_sizes = [base_size * .10] + min_sizes - max_sizes = [base_size * .20] + max_sizes - - if step_h: - assert isinstance(step_h,list) and len(step_h) == num_layer, \ - 'step_h should be list and inputs and step_h should have same length' - if step_w: - assert isinstance(step_w,list) and len(step_w) == num_layer, \ - 'step_w should be list and inputs and step_w should have same length' - if steps: - assert isinstance(steps,list) and len(steps) == num_layer, \ - 'steps should be list and inputs and step_w should have same length' - step_w = steps - step_h = steps - if aspect_ratios: - assert isinstance(aspect_ratios, list) and len(aspect_ratios) == num_layer, \ - 'aspect_ratios should be list and inputs and aspect_ratios should ' \ - 'have same length' - - box_results = [] - var_results = [] - for i, input in enumerate(inputs): - min_size = min_sizes[i] - max_size = max_sizes[i] - aspect_ratio = [] - if not isinstance(min_size, list): - min_size = [min_size] - if not isinstance(max_size, list): - max_size = [max_size] - if aspect_ratios: - aspect_ratio = aspect_ratios[i] - if not isinstance(aspect_ratio, list): - aspect_ratio = [aspect_ratio] - - box, var = prior_box(input, image, min_size, max_size, aspect_ratio, - variance, flip, clip, step_w[i] - if step_w else 0.0, step_h[i] - if step_w else 0.0, offset) - - box_results.append(box) - var_results.append(var) - - if len(box_results) == 1: - box = box_results[0] - var = var_results[0] - else: - axis = 3 - reshaped_boxes = [] - reshaped_vars = [] - for i in range(len(box_results)): - reshaped_boxes += [reshape_with_axis(box_results[i], axis=[axis])] - reshaped_vars += [reshape_with_axis(var_results[i], axis=[axis])] - - helper = LayerHelper("concat", **locals()) - dtype = helper.input_dtype() - box = helper.create_tmp_variable(dtype) - var = helper.create_tmp_variable(dtype) - - axis = 0 - helper.append_op( - type="concat", - inputs={"X": reshaped_boxes}, - outputs={"Out": box}, - attrs={'axis': axis}) + new_shape = [-1, reduce(mul, input_shape[axis:len(input_shape)], 1)] - var = helper.create_tmp_variable(dtype) - helper.append_op( - type="concat", - inputs={"X": reshaped_vars}, - outputs={"Out": var}, - attrs={'axis': axis}) - - return box, var + helper = LayerHelper('reshape', **locals()) + out = helper.create_tmp_variable(helper.input_dtype()) + helper.append_op( + type='reshape', + inputs={'X': [input]}, + outputs={'Out': [out]}, + attrs={'shape': new_shape}) + return out -- GitLab