未验证 提交 61fdc38e 编写于 作者: T tensor-tang 提交者: GitHub

Merge pull request #14206 from tensor-tang/fea/jit/gen

Fea/jit/gen
......@@ -76,6 +76,6 @@ endif()
cc_test(concat_test SRCS concat_test.cc DEPS concat_and_split)
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
cc_library(jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc
DEPS cpu_info cblas)
SRCS jit_kernel.cc jit_gen.cc jit_code.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc
DEPS cpu_info cblas gflags enforce)
cc_test(jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_code.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {
using namespace platform::jit; // NOLINT
bool VMulJitCode::init(int d) {
// TODO(TJ): maybe one AVX is enough, AVX above would slow down freq
// try more with avx2 or avx512
if (MayIUse(avx) || MayIUse(avx2)) {
return d % AVX_FLOAT_BLOCK == 0;
} else {
return false;
}
}
void VMulJitCode::generate() {
// do not need push stack, and do not need save avx512reg if do not use avx512
int stride = sizeof(float) * AVX_FLOAT_BLOCK;
for (int i = 0; i < num_ / AVX_FLOAT_BLOCK; ++i) {
vmovups(ymm_src1, ptr[param1 + i * stride]);
vmovups(ymm_src2, ptr[param2 + i * stride]);
vmulps(ymm_dst, ymm_src1, ymm_src2);
vmovups(ptr[param3 + stride * i], ymm_dst);
}
ret();
}
} // namespace gen
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/operators/math/jit_gen.h"
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {
using reg64_t = const Xbyak::Reg64;
using reg32_t = const Xbyak::Reg32;
using xmm_t = const Xbyak::Xmm;
using ymm_t = const Xbyak::Ymm;
using zmm_t = const Xbyak::Zmm;
using Label = Xbyak::Label;
class VMulJitCode : public JitCode {
public:
DECLARE_JIT_CODE(VMulJitCode);
explicit VMulJitCode(int d, size_t code_size = 256 * 1024,
void* code_ptr = nullptr)
: JitCode(code_size, code_ptr), num_(d) {}
static bool init(int d);
void generate() override;
private:
int num_;
reg64_t param1{abi_param1};
reg64_t param2{abi_param2};
reg64_t param3{abi_param3};
xmm_t xmm_src1 = xmm_t(0);
ymm_t ymm_src1 = ymm_t(0);
zmm_t zmm_src1 = zmm_t(0);
xmm_t xmm_src2 = xmm_t(1);
ymm_t ymm_src2 = ymm_t(1);
zmm_t zmm_src2 = zmm_t(1);
xmm_t xmm_dst = xmm_t(2);
ymm_t ymm_dst = ymm_t(2);
zmm_t zmm_dst = zmm_t(2);
};
} // namespace gen
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_gen.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include "paddle/fluid/platform/cpu_info.h"
DEFINE_bool(dump_jitcode, false, "Whether to dump the jitcode to file");
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {
constexpr Xbyak::Operand::Code g_abi_regs[] = {
Xbyak::Operand::RBX, Xbyak::Operand::RBP, Xbyak::Operand::R12,
Xbyak::Operand::R13, Xbyak::Operand::R14, Xbyak::Operand::R15};
constexpr int num_g_abi_regs = sizeof(g_abi_regs) / sizeof(g_abi_regs[0]);
void JitCode::preCode() {
for (int i = 0; i < num_g_abi_regs; ++i) {
push(Xbyak::Reg64(g_abi_regs[i]));
}
if (platform::jit::MayIUse(platform::jit::avx512f)) {
mov(reg_EVEX_max_8b_offt, 2 * EVEX_max_8b_offt);
}
}
void JitCode::postCode() {
for (int i = 0; i < num_g_abi_regs; ++i) {
pop(Xbyak::Reg64(g_abi_regs[num_g_abi_regs - 1 - i]));
}
ret();
}
void JitCode::dumpCode(const Xbyak::uint8 *code) const {
if (code) {
static int counter = 0;
std::ostringstream filename;
filename << "paddle_jitcode_" << name() << "." << counter << ".bin";
counter++;
std::ofstream fout(filename.str(), std::ios::out);
if (fout.is_open()) {
fout.write(reinterpret_cast<const char *>(code), getSize());
fout.close();
}
}
}
Xbyak::Address JitCode::EVEX_compress_addr(Xbyak::Reg64 base, int offt,
bool bcast) {
int scale = 0;
if (EVEX_max_8b_offt <= offt && offt < 3 * EVEX_max_8b_offt) {
offt = offt - 2 * EVEX_max_8b_offt;
scale = 1;
} else if (3 * EVEX_max_8b_offt <= offt && offt < 5 * EVEX_max_8b_offt) {
offt = offt - 4 * EVEX_max_8b_offt;
scale = 2;
}
auto re = Xbyak::RegExp() + base + offt;
if (scale) {
re = re + reg_EVEX_max_8b_offt * scale;
}
if (bcast) {
return zword_b[re];
} else {
return zword[re];
}
}
} // namespace gen
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <type_traits>
#include "paddle/fluid/platform/macros.h"
#define XBYAK_USE_MMAP_ALLOCATOR
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
DECLARE_bool(dump_jitcode);
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace gen {
#define DECLARE_JIT_CODE(codename) \
const char *name() const override { return #codename; }
// Application Binary Interface
constexpr Xbyak::Operand::Code abi_param1(Xbyak::Operand::RDI),
abi_param2(Xbyak::Operand::RSI), abi_param3(Xbyak::Operand::RDX),
abi_param4(Xbyak::Operand::RCX), abi_not_param1(Xbyak::Operand::RCX);
class JitCode : public Xbyak::CodeGenerator {
public:
explicit JitCode(size_t code_size = 256 * 1024, void *code_ptr = nullptr)
: Xbyak::CodeGenerator(code_size, code_ptr) {}
virtual ~JitCode() {}
virtual const char *name() const = 0;
virtual void generate() = 0;
template <typename FUNC>
const FUNC getCode() {
this->generate();
const Xbyak::uint8 *code = CodeGenerator::getCode();
if (FLAGS_dump_jitcode) {
this->dumpCode(code);
}
return reinterpret_cast<const FUNC>(code);
}
DISABLE_COPY_AND_ASSIGN(JitCode);
protected:
Xbyak::Reg64 param1{abi_param1};
const int EVEX_max_8b_offt = 0x200;
const Xbyak::Reg64 reg_EVEX_max_8b_offt = rbp;
void preCode();
void postCode();
void dumpCode(const Xbyak::uint8 *code) const;
void L(const char *label) { Xbyak::CodeGenerator::L(label); }
void L(const Xbyak::Label &label) { Xbyak::CodeGenerator::L(label); }
// Enhanced vector extension
Xbyak::Address EVEX_compress_addr(Xbyak::Reg64 base, int offt,
bool bcast = false);
};
} // namespace gen
} // namespace jitkernel
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -39,6 +39,7 @@ class Kernel {
public:
Kernel() = default;
virtual ~Kernel() = default;
// TODO(TJ): below members should be deprecated.
int num_{0};
int end_{0};
int rest_{0};
......@@ -64,7 +65,7 @@ class KernelPool {
template <typename T>
class VMulKernel : public Kernel {
public:
virtual void Compute(const T *x, const T *y, T *z) const = 0;
void (*Compute)(const T *, const T *, T *, int);
};
template <typename T>
......
......@@ -14,7 +14,10 @@ limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_code.h"
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
......@@ -27,65 +30,76 @@ namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] * y[i];
}
}
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);
template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
platform::dynload::vsMul(n, x, y, z);
}
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
platform::dynload::vdMul(n, x, y, z);
}
#endif
/* VMUL JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
public:
explicit VMulKernelImpl(int d) : VMulKernel<T>() { this->num_ = d; }
void Compute(const T* x, const T* y, T* z) const override {
for (int i = 0; i < this->num_; ++i) {
z[i] = x[i] * y[i];
}
static inline std::string name(int d) {
PADDLE_THROW("DType should be either float or double");
}
};
static inline bool useJIT(int d) { return false; }
static inline bool useMKL(int d) { return false; }
explicit VMulKernelImpl(int d) : VMulKernel<T>() {
if (useJIT(d)) {
constexpr size_t sz = 256 * 1024; // TODO(TJ): should be related with d
jitcode_.reset(new gen::VMulJitCode(d, sz));
this->Compute =
jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
return;
}
#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block) \
template <> \
void VMulKernelImpl<float, isa, block>::Compute( \
const float* x, const float* y, float* z) const { \
platform::dynload::vsMul(this->num_, x, y, z); \
if (useMKL(d)) {
this->Compute = VMulMKL<T>;
return;
}
#endif
this->Compute = VMulRefer<T>;
}
#define MKL_DOUBLE(isa, block) \
template <> \
void VMulKernelImpl<double, isa, block>::Compute( \
const double* x, const double* y, double* z) const { \
platform::dynload::vdMul(this->num_, x, y, z); \
}
private:
std::unique_ptr<gen::VMulJitCode> jitcode_{nullptr};
};
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
#endif
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
return gen::VMulJitCode::init(d);
}
#define INTRI8_FLOAT(isa) \
template <> \
void VMulKernelImpl<float, isa, kEQ8>::Compute( \
const float* x, const float* y, float* z) const { \
__m256 tmpx, tmpy; \
tmpx = _mm256_loadu_ps(x); \
tmpy = _mm256_loadu_ps(y); \
tmpx = _mm256_mul_ps(tmpx, tmpy); \
_mm256_storeu_ps(z, tmpx); \
}
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
return jit::MayIUse(jit::avx512f) && d > 512;
}
// avx > for > mkl
#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512
#undef INTRI8_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
template <>
bool VMulKernelImpl<double>::useMKL(int d) {
return true;
}
REGISTER_JITKERNEL(vmul, VMulKernel);
/* VADD JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
......@@ -465,13 +479,12 @@ INTRI_COMMON_FLOAT(jit::avx512f, kGT16);
#undef INTRI16_FLOAT
#undef INTRI_COMMON_FLOAT
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL(vrelu, VReluKernel);
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL(videntity, VIdentityKernel);
REGISTER_JITKERNEL_DEPRECATED(vadd, VAddKernel);
REGISTER_JITKERNEL_DEPRECATED(vscal, VScalKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
} // namespace jitkernel
} // namespace math
......
......@@ -288,7 +288,7 @@ INTRIAVX512_FLOAT(kGT16);
#undef INIT_ALPHA
#undef UPDATE_ALPHA
REGISTER_JITKERNEL(crf_decode, CRFDecodeKernel);
REGISTER_JITKERNEL_DEPRECATED(crf_decode, CRFDecodeKernel);
} // namespace jitkernel
} // namespace math
......
......@@ -250,7 +250,7 @@ INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
#undef MKL_FLOAT
#undef MKL_DOUBLE
REGISTER_JITKERNEL(vexp, VExpKernel);
REGISTER_JITKERNEL_DEPRECATED(vexp, VExpKernel);
/* VSigmoid JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
......@@ -396,7 +396,7 @@ INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
#undef INTRI_GT16_FLOAT
#undef INTRI_VSIGMOID
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
REGISTER_JITKERNEL_DEPRECATED(vsigmoid, VSigmoidKernel);
/* VTanh JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
......@@ -531,7 +531,7 @@ INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
#undef INTRI_GT16_FLOAT
#undef INTRI_VTANH
REGISTER_JITKERNEL(vtanh, VTanhKernel);
REGISTER_JITKERNEL_DEPRECATED(vtanh, VTanhKernel);
#undef JITKERNEL_NEW_ACT_IMPL
......
......@@ -21,8 +21,71 @@ namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;
#define JITKERNEL_DEFINE_NAME(ker_key, ker_class) \
template <> \
std::string ker_class##Impl<float>::name(int d) { \
std::string key(#ker_key "f"); \
if (useJIT(d)) { \
/* only jit code need record d*/ \
return key + "jit" + std::to_string(d); \
} else if (useMKL(d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
} \
template <> \
std::string ker_class##Impl<double>::name(int d) { \
std::string key(#ker_key "d"); \
/* jit code do not support double yet*/ \
if (useMKL(d)) { \
return key + "mkl"; \
} else { \
return key + "any"; \
} \
}
#define JITKERNEL_DECLARE(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>, int>(int d)
#define JITKERNEL_FIND_KEY(ker_class, ker_dtype) \
std::string key = ker_class##Impl<ker_dtype>::name(d)
#define JITKERNEL_IMPL(ker_class, ker_dtype) \
p = std::dynamic_pointer_cast<ker_class<ker_dtype>>( \
std::make_shared<ker_class##Impl<ker_dtype>>(d))
#define REGISTER_JITKERNEL_WITH_DTYPE(ker_class, ker_dtype, marco_declare, \
macro_find_key, macro_impl) \
marco_declare(ker_class, ker_dtype) { \
macro_find_key(ker_class, ker_dtype); \
if (kers_.find(key) == kers_.end()) { \
std::shared_ptr<ker_class<ker_dtype>> p; \
macro_impl(ker_class, ker_dtype); \
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)}); \
return p; \
} \
return std::dynamic_pointer_cast<const ker_class<ker_dtype>>( \
kers_.at(key)); \
}
#define REGISTER_JITKERNEL_ARGS(ker_key, ker_class, marco_define_name, \
marco_declare, macro_find_key, macro_impl) \
marco_define_name(ker_key, ker_class); \
REGISTER_JITKERNEL_WITH_DTYPE(ker_class, float, JITKERNEL_DECLARE, \
JITKERNEL_FIND_KEY, JITKERNEL_IMPL); \
REGISTER_JITKERNEL_WITH_DTYPE(ker_class, double, JITKERNEL_DECLARE, \
JITKERNEL_FIND_KEY, JITKERNEL_IMPL)
#define REGISTER_JITKERNEL(ker_key, ker_class) \
REGISTER_JITKERNEL_ARGS(ker_key, ker_class, JITKERNEL_DEFINE_NAME, \
JITKERNEL_DECLARE, JITKERNEL_FIND_KEY, \
JITKERNEL_IMPL)
namespace jit = platform::jit;
// TODO(TJ): below defines are deprecated, would be remove recently
#define SEARCH_BLOCK(macro_, ker, dtype, isa) \
if (d < AVX_FLOAT_BLOCK) { \
macro_(ker, dtype, isa, kLT8); \
......@@ -47,44 +110,42 @@ namespace jit = platform::jit;
SEARCH_BLOCK(macro_, ker, dtype, jit::isa_any); \
}
#define JITKERNEL_DECLARE(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>, int>(int d)
#define JITKERNEL_KEY(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d)
#define JITKERNEL_NEW_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
#define JITKERNEL_NEW_IMPL_DEPRECATED(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(d))
#define JITKERNEL_WITH_DTYPE(ker_key, ker_class, ker_dtype, dtype_key, \
marco_declare, macro_key, macro_impl) \
marco_declare(ker_class, ker_dtype) { \
std::string key = macro_key(ker_key, dtype_key); \
if (kers_.find(key) == kers_.end()) { \
std::shared_ptr<ker_class<ker_dtype>> p; \
SEARCH_ISA_BLOCK(macro_impl, ker_class, ker_dtype); \
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)}); \
return p; \
} \
return std::dynamic_pointer_cast<const ker_class<ker_dtype>>( \
kers_.at(key)); \
#define JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, ker_dtype, \
dtype_key, marco_declare, macro_key, \
macro_impl) \
marco_declare(ker_class, ker_dtype) { \
std::string key = macro_key(ker_key, dtype_key); \
if (kers_.find(key) == kers_.end()) { \
std::shared_ptr<ker_class<ker_dtype>> p; \
SEARCH_ISA_BLOCK(macro_impl, ker_class, ker_dtype); \
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)}); \
return p; \
} \
return std::dynamic_pointer_cast<const ker_class<ker_dtype>>( \
kers_.at(key)); \
}
#define REGISTER_JITKERNEL(ker_key, ker_class) \
JITKERNEL_WITH_DTYPE(ker_key, ker_class, float, f, JITKERNEL_DECLARE, \
JITKERNEL_KEY, JITKERNEL_NEW_IMPL); \
JITKERNEL_WITH_DTYPE(ker_key, ker_class, double, d, JITKERNEL_DECLARE, \
JITKERNEL_KEY, JITKERNEL_NEW_IMPL)
#define REGISTER_JITKERNEL_ARGS(ker_key, ker_class, marco_declare, macro_key, \
macro_impl) \
JITKERNEL_WITH_DTYPE(ker_key, ker_class, float, f, marco_declare, macro_key, \
macro_impl); \
JITKERNEL_WITH_DTYPE(ker_key, ker_class, double, d, marco_declare, \
macro_key, macro_impl)
#define REGISTER_JITKERNEL_DEPRECATED(ker_key, ker_class) \
JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, float, f, \
JITKERNEL_DECLARE, JITKERNEL_KEY, \
JITKERNEL_NEW_IMPL_DEPRECATED); \
JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, double, d, \
JITKERNEL_DECLARE, JITKERNEL_KEY, \
JITKERNEL_NEW_IMPL_DEPRECATED)
#define REGISTER_JITKERNEL_ARGS_DEPRECATED(ker_key, ker_class, marco_declare, \
macro_key, macro_impl) \
JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, float, f, marco_declare, \
macro_key, macro_impl); \
JITKERNEL_WITH_DTYPE_DEPRECATED(ker_key, ker_class, double, d, \
marco_declare, macro_key, macro_impl)
#define FOR_EACH_ISA(macro_, block) \
macro_(jit::avx512f, block); \
......
......@@ -179,23 +179,23 @@ class LSTMKernelImpl : public LSTMKernel<T> {
/* C_t = C_t-1 * fgated + cand_gated * igated */
act_cand_d_->Compute(gates, gates);
vmul_d_->Compute(gates, gates + d_, gates + d_);
vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
vmul_d_->Compute(gates, gates + d_, gates + d_, d_);
vmul_d_->Compute(ct_1, gates + d2_, gates + d2_, d_);
vadd_d_->Compute(gates + d_, gates + d2_, ct);
/* H_t = act_cell(C_t) * ogated */
act_cell_d_->Compute(ct, gates + d2_);
vmul_d_->Compute(gates + d2_, gates + d3_, ht);
vmul_d_->Compute(gates + d2_, gates + d3_, ht, d_);
}
void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
/* C_t = igated * cgated*/
act_gate_d_->Compute(gates + d_, gates + d_);
act_cand_d_->Compute(gates, gates);
vmul_d_->Compute(gates, gates + d_, ct);
vmul_d_->Compute(gates, gates + d_, ct, d_);
/* H_t = act_cell(C_t) * ogated */
act_gate_d_->Compute(gates + d3_, gates + d3_);
act_cell_d_->Compute(ct, gates + d2_);
vmul_d_->Compute(gates + d2_, gates + d3_, ht);
vmul_d_->Compute(gates + d2_, gates + d3_, ht, d_);
}
private:
......@@ -289,36 +289,36 @@ class PeepholeKernelImpl : public LSTMKernel<T> {
void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
T* checked) const override {
/* get fgated and igated*/
vmul_d_->Compute(wp_data, ct_1, checked);
vmul_d_->Compute(wp_data + d_, ct_1, checked + d_);
vmul_d_->Compute(wp_data, ct_1, checked, d_);
vmul_d_->Compute(wp_data + d_, ct_1, checked + d_, d_);
vadd_d2_->Compute(checked, gates + d_, gates + d_);
act_gate_d2_->Compute(gates + d_, gates + d_);
/* C_t = C_t-1 * fgated + cand_gated * igated*/
act_cand_d_->Compute(gates, gates);
vmul_d_->Compute(gates, gates + d_, gates + d_);
vmul_d_->Compute(ct_1, gates + d2_, gates + d2_);
vmul_d_->Compute(gates, gates + d_, gates + d_, d_);
vmul_d_->Compute(ct_1, gates + d2_, gates + d2_, d_);
vadd_d_->Compute(gates + d_, gates + d2_, ct);
/* get ogated*/
vmul_d_->Compute(wp_data + d2_, ct, gates + d_);
vmul_d_->Compute(wp_data + d2_, ct, gates + d_, d_);
vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_);
act_gate_d_->Compute(gates + d3_, gates + d3_);
/* H_t = act_cell(C_t) * ogated */
act_cell_d_->Compute(ct, gates + d2_);
vmul_d_->Compute(gates + d2_, gates + d3_, ht);
vmul_d_->Compute(gates + d2_, gates + d3_, ht, d_);
}
void ComputeC1H1(T* gates, T* ct, T* ht, const T* wp_data) const override {
/* C_t = igated * cgated*/
act_gate_d_->Compute(gates + d_, gates + d_);
act_cand_d_->Compute(gates, gates);
vmul_d_->Compute(gates, gates + d_, ct);
vmul_d_->Compute(gates, gates + d_, ct, d_);
/* get outgated, put W_oc * C_t on igated */
vmul_d_->Compute(wp_data + d2_, ct, gates + d_);
vmul_d_->Compute(wp_data + d2_, ct, gates + d_, d_);
vadd_d_->Compute(gates + d_, gates + d3_, gates + d3_);
/* H_t = act_cell(C_t) * ogated */
act_gate_d_->Compute(gates + d3_, gates + d3_);
act_cell_d_->Compute(ct, gates + d2_);
vmul_d_->Compute(gates + d2_, gates + d3_, ht);
vmul_d_->Compute(gates + d2_, gates + d3_, ht, d_);
}
private:
......@@ -352,8 +352,8 @@ class PeepholeKernelImpl : public LSTMKernel<T> {
act_cell, d)); \
}
REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);
REGISTER_JITKERNEL_ARGS_DEPRECATED(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
JITKERNEL_KEY_LSTM, JITKERNEL_NEW_LSTM_IMPL);
#undef INTRI8_FLOAT
#undef JITKERNEL_DECLARE_LSTM
......@@ -378,13 +378,13 @@ class GRUKernelImpl : public GRUKernel<T> {
void ComputeH1(T* gates, T* ht) const override {
act_gate_d_->Compute(gates, gates);
act_state_d_->Compute(gates + d2_, gates + d2_);
vmul_d_->Compute(gates, gates + d2_, ht);
vmul_d_->Compute(gates, gates + d2_, ht, d_);
}
void ComputeHtPart1(T* gates, const T* ht_1, T* ht) const override {
// W: {W_update, W_reset; W_state}
act_gate_d2_->Compute(gates, gates);
vmul_d_->Compute(ht_1, gates + d_, ht);
vmul_d_->Compute(ht_1, gates + d_, ht, d_);
}
void ComputeHtPart2(T* gates, const T* ht_1, T* ht) const override {
......@@ -472,8 +472,8 @@ INTRI8_FLOAT(jit::avx512f);
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_state, d));
REGISTER_JITKERNEL_ARGS(gru, GRUKernel, JITKERNEL_DECLARE_GRU,
JITKERNEL_KEY_GRU, JITKERNEL_NEW_GRU_IMPL);
REGISTER_JITKERNEL_ARGS_DEPRECATED(gru, GRUKernel, JITKERNEL_DECLARE_GRU,
JITKERNEL_KEY_GRU, JITKERNEL_NEW_GRU_IMPL);
#undef INTRI8_FLOAT
#undef JITKERNEL_NEW_GRU_IMPL
......
......@@ -369,12 +369,12 @@ void lstm_ctht_better(
int d2 = d * 2;
vsigmoid_3d->Compute(gates + d, gates + d);
vtanh_d->Compute(gates, gates);
vmul_d->Compute(gates, gates + d, gates + d);
vmul_d->Compute(ct_1, gates + d2, gates + d2);
vmul_d->Compute(gates, gates + d, gates + d, d);
vmul_d->Compute(ct_1, gates + d2, gates + d2, d);
vadd_d->Compute(gates + d, gates + d2, ct);
/* H_t = act_cell(C_t) * ogated */
vtanh_d->Compute(ct, gates + d2);
vmul_d->Compute(gates + d2, gates + d * 3, ht);
vmul_d->Compute(gates + d2, gates + d * 3, ht, d);
}
TEST(JitKernel, lstm) {
......@@ -578,7 +578,7 @@ void vmul_mkl(const int n, const float* x, const float* y, float* z) {
TEST(JitKernel, vmul) {
namespace jit = paddle::operators::math::jitkernel;
for (int d : {7, 8, 15, 16, 30, 256, 512}) {
for (int d : {7, 8, 15, 16, 30, 256, 512, 1000, 1024}) {
std::vector<float> x(d), y(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data());
......@@ -616,7 +616,7 @@ TEST(JitKernel, vmul) {
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(x_data, y_data, ztgt_data);
ker->Compute(x_data, y_data, ztgt_data, d);
}
auto ttgte = GetCurrentUS();
......@@ -800,8 +800,8 @@ TEST(JitKernel, pool) {
EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f) !=
std::dynamic_pointer_cast<const jit::Kernel>(pvmul_d));
const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulf4");
const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulfany");
EXPECT_EQ(pvmul_f, pvmul_from_key);
const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulf5");
const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulfjit");
EXPECT_TRUE(pvmul_from_key2 == nullptr);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册