未验证 提交 6151ccd4 编写于 作者: V veyron95 提交者: GitHub

[NPU] Support npu op: (1) cos (2) cos_grad (#34573)

* [NPU] Support npu op: (1) cos (2) cos_grad

* Update test_cos_op_npu.py

* Update activation_op_npu.cc

* rm redundant {1}
上级 68399947
...@@ -472,6 +472,61 @@ class ReciprocalGradNPUKernel : public framework::OpKernel<T> { ...@@ -472,6 +472,61 @@ class ReciprocalGradNPUKernel : public framework::OpKernel<T> {
} }
}; };
template <typename DeviceContext, typename T>
class CosNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto place = ctx.GetPlace();
out->mutable_data<T>(place);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner = NpuOpRunner("Cos", {*x}, {*out}, {});
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class CosGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* x = ctx.Input<Tensor>("X");
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto place = ctx.GetPlace();
dx->mutable_data<T>(place);
Tensor sin_out(x->type()); // Temporary Tensor
sin_out.Resize(x->dims());
sin_out.mutable_data<T>(place);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner = NpuOpRunner("Sin", {*x}, {sin_out}, {});
runner.Run(stream);
const auto& runner_dx = NpuOpRunner("Mul", {*dout, sin_out}, {*dx}, {});
runner_dx.Run(stream);
Tensor tmp(x->type()); // Temporary Tensor
tmp.Resize(framework::make_ddim({1, 1}));
tmp.mutable_data<T>(place);
float factor = -1.;
FillNpuTensorWithConstant<T>(&tmp, static_cast<T>(factor));
const auto& runner_dx_ = NpuOpRunner("Xdivy", {*dx, tmp}, {*dx}, {});
runner_dx_.Run(stream);
// dx = -dout * Sine(x);
}
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -583,3 +638,13 @@ REGISTER_OP_NPU_KERNEL( ...@@ -583,3 +638,13 @@ REGISTER_OP_NPU_KERNEL(
ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, double>, ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext, ops::ReciprocalGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>); paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
cos, ops::CosNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::CosNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
cos_grad, ops::CosGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::CosGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
class TestCos(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "cos"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.cos(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-7)
def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(self.place, ['X'], 'Out')
class TestCosFp16(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "cos"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
out = np.cos(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place)
class TestCosNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
c = paddle.multiply(a, b)
d = paddle.cos(c)
fc_1 = fluid.layers.fc(input=d, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册