Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
60d6348e
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
60d6348e
编写于
5月 02, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert develop
上级
86af6bdc
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
30 addition
and
52 deletion
+30
-52
paddle/fluid/operators/math/pooling.cu
paddle/fluid/operators/math/pooling.cu
+30
-52
未找到文件。
paddle/fluid/operators/math/pooling.cu
浏览文件 @
60d6348e
...
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
...
...
@@ -22,7 +20,7 @@ namespace operators {
namespace
math
{
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool2D
(
const
int
nthreads
,
const
T
*
input_data
,
// NOLINT
__global__
void
KernelPool2D
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
...
...
@@ -60,8 +58,8 @@ __global__ void KernelPool2D(const int nthreads, const T* input_data, // NOLINT
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool2DGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
// NOLINT
const
T
*
output_grad
,
const
int
channels
,
const
int
input_height
,
// NOLINT
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
...
...
@@ -108,8 +106,8 @@ __global__ void KernelPool2DGrad(
template
<
typename
T
>
__global__
void
KernelMaxPool2DGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
// NOLINT
const
T
*
output_grad
,
const
int
channels
,
const
int
input_height
,
// NOLINT
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
...
...
@@ -160,10 +158,8 @@ template <typename PoolProcess, typename T>
class
Pool2dFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -205,10 +201,8 @@ class Pool2dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -252,10 +246,8 @@ class MaxPool2dGradFunctor<platform::CUDADeviceContext, T> {
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -314,7 +306,7 @@ template class Pool2dGradFunctor<platform::CUDADeviceContext,
double
>
;
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool3D
(
const
int
nthreads
,
const
T
*
input_data
,
// NOLINT
__global__
void
KernelPool3D
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
...
...
@@ -360,8 +352,8 @@ __global__ void KernelPool3D(const int nthreads, const T* input_data, // NOLINT
template
<
typename
PoolProcess
,
typename
T
>
__global__
void
KernelPool3DGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
// NOLINT
const
T
*
output_grad
,
const
int
channels
,
const
int
input_depth
,
// NOLINT
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
...
...
@@ -424,8 +416,8 @@ __global__ void KernelPool3DGrad(
template
<
typename
T
>
__global__
void
KernelMaxPool3DGrad
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
// NOLINT
const
T
*
output_grad
,
const
int
channels
,
const
int
input_depth
,
// NOLINT
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
...
...
@@ -482,10 +474,8 @@ template <typename PoolProcess, class T>
class
Pool3dFunctor
<
platform
::
CUDADeviceContext
,
PoolProcess
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -535,10 +525,8 @@ class Pool3dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -590,10 +578,8 @@ class MaxPool3dGradFunctor<platform::CUDADeviceContext, T> {
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -750,10 +736,8 @@ template <typename T1, typename T2>
class
MaxPool2dWithIndexFunctor
<
platform
::
CUDADeviceContext
,
T1
,
T2
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -795,10 +779,8 @@ class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
input_channels
=
input_grad
->
dims
()[
1
];
...
...
@@ -955,10 +937,8 @@ template <typename T1, typename T2>
class
MaxPool3dWithIndexFunctor
<
platform
::
CUDADeviceContext
,
T1
,
T2
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
...
...
@@ -1007,10 +987,8 @@ class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
// NOLINT
std
::
vector
<
int
>&
strides
,
// NOLINT
std
::
vector
<
int
>&
paddings
,
// NOLINT
const
framework
::
Tensor
&
mask
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
input_channels
=
input_grad
->
dims
()[
1
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录