Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
6089b7c6
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6089b7c6
编写于
2月 17, 2017
作者:
J
jacquesqiao
提交者:
GitHub
2月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1278 from jacquesqiao/v2-network
add v2-layer
上级
be3f7cb9
dcc54bff
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
265 addition
and
38 deletion
+265
-38
demo/mnist/api_train.py
demo/mnist/api_train.py
+19
-18
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+17
-18
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+6
-2
python/paddle/v2/activation.py
python/paddle/v2/activation.py
+37
-0
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+186
-0
未找到文件。
demo/mnist/api_train.py
浏览文件 @
6089b7c6
...
@@ -6,25 +6,16 @@ passed to C++ side of Paddle.
...
@@ -6,25 +6,16 @@ passed to C++ side of Paddle.
The user api could be simpler and carefully designed.
The user api could be simpler and carefully designed.
"""
"""
import
py_paddle.swig_paddle
as
api
from
py_paddle
import
DataProviderConverter
import
paddle.trainer.PyDataProvider2
as
dp
import
numpy
as
np
import
random
import
random
from
mnist_util
import
read_from_mnist
from
paddle.trainer_config_helpers
import
*
import
paddle.v2
import
numpy
as
np
import
paddle.trainer.PyDataProvider2
as
dp
import
paddle.v2
as
paddle_v2
import
py_paddle.swig_paddle
as
api
from
paddle.trainer_config_helpers
import
*
from
py_paddle
import
DataProviderConverter
def
network_config
():
from
mnist_util
import
read_from_mnist
imgs
=
data_layer
(
name
=
'pixel'
,
size
=
784
)
hidden1
=
fc_layer
(
input
=
imgs
,
size
=
200
)
hidden2
=
fc_layer
(
input
=
hidden1
,
size
=
200
)
inference
=
fc_layer
(
input
=
hidden2
,
size
=
10
,
act
=
SoftmaxActivation
())
cost
=
classification_cost
(
input
=
inference
,
label
=
data_layer
(
name
=
'label'
,
size
=
10
))
outputs
(
cost
)
def
init_parameter
(
network
):
def
init_parameter
(
network
):
...
@@ -67,7 +58,7 @@ def input_order_converter(generator):
...
@@ -67,7 +58,7 @@ def input_order_converter(generator):
def
main
():
def
main
():
api
.
initPaddle
(
"-use_gpu=false"
,
"-trainer_count=4"
)
# use 4 cpu cores
api
.
initPaddle
(
"-use_gpu=false"
,
"-trainer_count=4"
)
# use 4 cpu cores
optimizer
=
paddle
.
v2
.
optimizer
.
Adam
(
optimizer
=
paddle
_
v2
.
optimizer
.
Adam
(
learning_rate
=
1e-4
,
learning_rate
=
1e-4
,
batch_size
=
1000
,
batch_size
=
1000
,
model_average
=
ModelAverage
(
average_window
=
0.5
),
model_average
=
ModelAverage
(
average_window
=
0.5
),
...
@@ -79,8 +70,18 @@ def main():
...
@@ -79,8 +70,18 @@ def main():
updater
=
optimizer
.
create_local_updater
()
updater
=
optimizer
.
create_local_updater
()
assert
isinstance
(
updater
,
api
.
ParameterUpdater
)
assert
isinstance
(
updater
,
api
.
ParameterUpdater
)
# define network
images
=
paddle_v2
.
layer
.
data
(
name
=
'pixel'
,
size
=
784
)
label
=
paddle_v2
.
layer
.
data
(
name
=
'label'
,
size
=
10
)
hidden1
=
paddle_v2
.
layer
.
fc
(
input
=
images
,
size
=
200
)
hidden2
=
paddle_v2
.
layer
.
fc
(
input
=
hidden1
,
size
=
200
)
inference
=
paddle_v2
.
layer
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
paddle_v2
.
activation
.
Softmax
())
cost
=
paddle_v2
.
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
# Create Simple Gradient Machine.
# Create Simple Gradient Machine.
model_config
=
pa
rse_network_config
(
network_config
)
model_config
=
pa
ddle_v2
.
layer
.
parse_network
(
cost
)
m
=
api
.
GradientMachine
.
createFromConfigProto
(
model_config
,
m
=
api
.
GradientMachine
.
createFromConfigProto
(
model_config
,
api
.
CREATE_MODE_NORMAL
,
api
.
CREATE_MODE_NORMAL
,
optimizer
.
enable_types
())
optimizer
.
enable_types
())
...
...
demo/mnist/api_train_v2.py
浏览文件 @
6089b7c6
from
paddle.trainer_config_helpers
import
*
from
paddle.trainer.PyDataProvider2
import
dense_vector
,
integer_value
import
paddle.v2
as
paddle
import
numpy
import
numpy
import
paddle.v2
as
paddle
from
paddle.trainer.PyDataProvider2
import
dense_vector
,
integer_value
import
mnist_util
import
mnist_util
...
@@ -12,32 +12,31 @@ def train_reader():
...
@@ -12,32 +12,31 @@ def train_reader():
yield
item
yield
item
def
network_config
():
imgs
=
data_layer
(
name
=
'pixel'
,
size
=
784
)
hidden1
=
fc_layer
(
input
=
imgs
,
size
=
200
)
hidden2
=
fc_layer
(
input
=
hidden1
,
size
=
200
)
inference
=
fc_layer
(
input
=
hidden2
,
size
=
10
,
act
=
SoftmaxActivation
())
cost
=
classification_cost
(
input
=
inference
,
label
=
data_layer
(
name
=
'label'
,
size
=
10
))
outputs
(
cost
)
def
main
():
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
topology
=
parse_network_config
(
network_config
)
# define network topology
images
=
paddle
.
layer
.
data
(
name
=
'pixel'
,
size
=
784
)
label
=
paddle
.
layer
.
data
(
name
=
'label'
,
size
=
10
)
hidden1
=
paddle
.
layer
.
fc
(
input
=
images
,
size
=
200
)
hidden2
=
paddle
.
layer
.
fc
(
input
=
hidden1
,
size
=
200
)
inference
=
paddle
.
layer
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
paddle
.
activation
.
Softmax
())
cost
=
paddle
.
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
topology
=
paddle
.
layer
.
parse_network
(
cost
)
parameters
=
paddle
.
parameters
.
create
(
topology
)
parameters
=
paddle
.
parameters
.
create
(
topology
)
for
param_name
in
parameters
.
keys
():
for
param_name
in
parameters
.
keys
():
array
=
parameters
.
get
(
param_name
)
array
=
parameters
.
get
(
param_name
)
array
[:]
=
numpy
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
array
.
shape
)
array
[:]
=
numpy
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
array
.
shape
)
parameters
.
set
(
parameter_name
=
param_name
,
value
=
array
)
parameters
.
set
(
parameter_name
=
param_name
,
value
=
array
)
adam_optimizer
=
paddle
.
optimizer
.
Optimizer
(
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
learning_rate
=
0.01
,
learning_method
=
AdamOptimizer
())
def
event_handler
(
event
):
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
para
=
parameters
.
get
(
'___fc_
layer_
2__.w0'
)
para
=
parameters
.
get
(
'___fc_2__.w0'
)
print
"Pass %d, Batch %d, Cost %f, Weight Mean Of Fc 2 is %f"
%
(
print
"Pass %d, Batch %d, Cost %f, Weight Mean Of Fc 2 is %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
para
.
mean
())
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
para
.
mean
())
...
...
python/paddle/v2/__init__.py
浏览文件 @
6089b7c6
...
@@ -12,12 +12,16 @@
...
@@ -12,12 +12,16 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
optimizer
import
optimizer
import
layer
import
activation
import
parameters
import
parameters
import
py_paddle.swig_paddle
as
api
import
trainer
import
trainer
import
event
import
event
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
]
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
]
def
init
(
**
kwargs
):
def
init
(
**
kwargs
):
...
...
python/paddle/v2/activation.py
0 → 100644
浏览文件 @
6089b7c6
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers.activations
import
*
__all__
=
[
"Base"
,
"Tanh"
,
"Sigmoid"
,
"Softmax"
,
"Identity"
,
"Linear"
,
'SequenceSoftmax'
,
"Exp"
,
"Relu"
,
"BRelu"
,
"SoftRelu"
,
"STanh"
,
"Abs"
,
"Square"
,
"Log"
]
Base
=
BaseActivation
Tanh
=
TanhActivation
Sigmoid
=
SigmoidActivation
Softmax
=
SoftmaxActivation
SequenceSoftmax
=
SequenceSoftmaxActivation
Identity
=
IdentityActivation
Linear
=
Identity
Relu
=
ReluActivation
BRelu
=
BReluActivation
SoftRelu
=
SoftReluActivation
STanh
=
STanhActivation
Abs
=
AbsActivation
Square
=
SquareActivation
Exp
=
ExpActivation
Log
=
LogActivation
python/paddle/v2/layer.py
0 → 100644
浏览文件 @
6089b7c6
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.
The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.
```python
def network_config():
img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
inference = paddle.trainer_config_helpers.fc_layer(
input=img,
size=10,
act=paddle.trainer_config_helpers.SoftmaxActivation())
cost = paddle.trainer_config_helpers.classification_cost(
input=inference,
label=paddle.trainer_config_helpers.data_layer(name="label", size=10))
proto_desc = parse_network_config(network_config)
```
When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.
The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:
```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
input=inference,
label=paddle.v2.layer.data(name="label", size=10))
parameters = paddle.v2.parameters.create(cost)
```
This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
import
collections
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'cross_entropy_cost'
]
def
parse_network
(
*
outputs
):
"""
parse all output layers and then generate a model config proto.
:param outputs:
:return:
"""
def
__real_func__
():
context
=
dict
()
real_output
=
[
each
.
to_proto
(
context
=
context
)
for
each
in
outputs
]
conf_helps
.
outputs
(
real_output
)
return
__parse__
(
__real_func__
)
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layers
):
assert
isinstance
(
parent_layers
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
__parent_layers__
=
parent_layers
def
to_proto
(
self
,
context
):
"""
function to set proto attribute
"""
kwargs
=
dict
()
for
layer_name
in
self
.
__parent_layers__
:
if
not
isinstance
(
self
.
__parent_layers__
[
layer_name
],
collections
.
Sequence
):
v1_layer
=
self
.
__parent_layers__
[
layer_name
].
to_proto
(
context
=
context
)
else
:
v1_layer
=
map
(
lambda
x
:
x
.
to_proto
(
context
=
context
),
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
def
to_proto_impl
(
self
,
**
kwargs
):
raise
NotImplementedError
()
def
__convert_to_v2__
(
method_name
,
name_prefix
,
parent_names
):
if
name_prefix
is
not
None
:
wrapper
=
wrap_name_default
(
name_prefix
=
name_prefix
)
else
:
wrapper
=
None
class
V2LayerImpl
(
Layer
):
def
__init__
(
self
,
name
=
None
,
**
kwargs
):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
parent_layers
[
pname
]
=
kwargs
[
pname
]
for
key
in
kwargs
.
keys
():
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
if
wrapper
is
not
None
:
__init__
=
wrapper
(
__init__
)
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
method_name
)(
name
=
self
.
name
,
**
args
)
return
V2LayerImpl
data
=
__convert_to_v2__
(
'data_layer'
,
None
,
[])
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
'maxid_layer'
,
name_prefix
=
'maxid_layer'
,
parent_names
=
[
'input'
])
classification_cost
=
__convert_to_v2__
(
'classification_cost'
,
name_prefix
=
'classification_cost'
,
parent_names
=
[
'input'
,
'label'
])
cross_entropy_cost
=
__convert_to_v2__
(
'cross_entropy'
,
name_prefix
=
'cross_entropy'
,
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
size
=
784
)
label
=
data
(
name
=
'label'
,
size
=
10
)
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
maxid
=
max_id
(
input
=
inference
)
cost1
=
classification_cost
(
input
=
inference
,
label
=
label
)
cost2
=
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
print
parse_network
(
cost1
)
print
parse_network
(
cost2
)
print
parse_network
(
cost1
,
cost2
)
print
parse_network
(
cost2
)
print
parse_network
(
inference
,
maxid
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录