Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
5d1bbecb
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5d1bbecb
编写于
5月 20, 2022
作者:
Z
zn
提交者:
GitHub
5月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]support to spawn processes on mlu (#41787)
上级
2caee61f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
175 addition
and
8 deletion
+175
-8
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+3
-2
python/paddle/distributed/spawn.py
python/paddle/distributed/spawn.py
+48
-6
python/paddle/distributed/utils.py
python/paddle/distributed/utils.py
+9
-0
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
+112
-0
未找到文件。
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
5d1bbecb
...
...
@@ -41,6 +41,7 @@ if (WITH_ASCEND_CL)
endif
()
if
(
WITH_CNCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
reducer
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
cncl_context
)
endif
()
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
5d1bbecb
...
...
@@ -2224,8 +2224,9 @@ void BindImperative(py::module *m_ptr) {
},
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
defined(PADDLE_WITH_CNCL)
py
::
class_
<
imperative
::
ParallelContext
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>>
(
m
,
"ParallelContext"
);
...
...
python/paddle/distributed/spawn.py
浏览文件 @
5d1bbecb
...
...
@@ -74,7 +74,7 @@ def _py_supported_check():
def
_options_valid_check
(
options
):
# `print_config` keeped as a debug options, not show to users
supported_options
=
[
'start_method'
,
'ips'
,
'gpus'
,
'xpus'
,
'print_config'
,
'backend'
'start_method'
,
'ips'
,
'gpus'
,
'xpus'
,
'
mlus'
,
'
print_config'
,
'backend'
]
deprecated_options
=
[
'selected_devices'
,
'started_port'
,
'cluster_node_ips'
,
'node_ip'
,
...
...
@@ -99,6 +99,8 @@ def _get_default_nprocs():
return
core
.
get_cuda_device_count
()
elif
'xpu'
in
device
:
return
core
.
get_xpu_device_count
()
elif
'mlu'
in
device
:
return
core
.
get_mlu_device_count
()
elif
'cpu'
in
device
:
return
multiprocessing
.
cpu_count
()
else
:
...
...
@@ -113,6 +115,8 @@ def _get_default_backend():
return
'nccl'
elif
'xpu'
in
device
:
return
'bkcl'
elif
'mlu'
in
device
:
return
'cncl'
elif
'cpu'
in
device
:
return
'gloo'
else
:
...
...
@@ -232,6 +236,40 @@ def _get_subprocess_env_list(nprocs, options):
raise
ValueError
(
"The selected xpu card %s cannot found in "
"XPU_VISIBLE_DEVICES (%s)."
%
(
card_id
,
","
.
join
(
env_devices_list
)))
elif
options
[
'backend'
]
==
'cncl'
:
args
.
selected_devices
=
options
.
get
(
'mlus'
,
None
)
if
args
.
selected_devices
is
None
:
args
.
selected_devices
=
options
.
get
(
'selected_devices'
,
None
)
env_devices
=
os
.
getenv
(
"MLU_VISIBLE_DEVICES"
,
None
)
if
env_devices
is
None
or
env_devices
==
""
:
env_devices_list
=
[
str
(
x
)
for
x
in
six
.
moves
.
range
(
core
.
get_mlu_device_count
())
]
else
:
env_devices_list
=
env_devices
.
split
(
','
)
if
args
.
selected_devices
is
None
:
if
len
(
env_devices_list
)
<
nprocs
:
raise
RuntimeError
(
"the number of visible devices(%d) is less than the number "
"of spawn processes(%d), please ensure that the correct "
"`nprocs` argument is passed or the environment variable "
"`MLU_VISIBLE_DEVICES` is correctly configured."
%
(
len
(
env_devices_list
),
nprocs
))
args
.
selected_devices
=
","
.
join
(
[
str
(
env_devices_list
[
x
])
for
x
in
range
(
0
,
nprocs
)])
else
:
selected_device_list
=
args
.
selected_devices
.
split
(
','
)
if
len
(
selected_device_list
)
!=
nprocs
:
raise
ValueError
(
"The number of selected devices(%s) is not equal to "
"the number of spawn processes(%d), please ensure that the "
"correct `nprocs` and `mlus` arguments are passed."
%
(
len
(
selected_device_list
),
nprocs
))
for
card_id
in
selected_device_list
:
if
card_id
not
in
env_devices_list
:
raise
ValueError
(
"The selected mlu card %s cannot found in "
"MLU_VISIBLE_DEVICES (%s)."
%
(
card_id
,
","
.
join
(
env_devices_list
)))
elif
options
[
'backend'
]
==
'gloo'
:
# TODO check gpu / xpu flag must not exist
warnings
.
warn
(
...
...
@@ -303,6 +341,8 @@ def _set_trainer_env(env_dict, backend):
set_flags
({
'FLAGS_selected_gpus'
:
env_dict
[
'FLAGS_selected_gpus'
]})
elif
backend
==
'bkcl'
:
set_flags
({
'FLAGS_selected_xpus'
:
env_dict
[
'FLAGS_selected_xpus'
]})
elif
backend
==
'cncl'
:
set_flags
({
'FLAGS_selected_mlus'
:
env_dict
[
'FLAGS_selected_mlus'
]})
else
:
#NOTE(xiongkun) why not raise Error ?
# So far, we added support for CPU parallel, and will be applied when paddle is not
...
...
@@ -396,9 +436,9 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
Start multiple processes with ``spawn`` method for parallel training.
.. note::
``spawn`` now only supports GPU or XPU collective mode. The collective mode
of GPU and XPU cannot be started at the same time, so the option `gpus` and
`xpus` cannot be configured at the same time.
``spawn`` now only supports GPU or XPU
or MLU
collective mode. The collective mode
of GPU and XPU
and MLU
cannot be started at the same time, so the option `gpus` and
`xpus`
and 'mlus'
cannot be configured at the same time.
Args:
func (function): The target function is called by spawned process.
...
...
@@ -425,7 +465,9 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
selected gpus, such as "0,1,2,3". Default: None;
(3) xpus (string): The training process will run on the
selected xpus, such as "0,1,2,3". Default: None;
(4) ips (string): Paddle cluster nodes ips, such as
(4) mlus (string): The training process will run on the
selected mlus, such as "0,1,2,3". Default: None;
(5) ips (string): Paddle cluster nodes ips, such as
"192.168.0.16,192.168.0.17". Default: "127.0.0.1" .
Returns:
...
...
@@ -457,7 +499,7 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
# 2. create data parallel layer & optimizer
layer = LinearNet()
dp_layer = paddle.DataParallel(layer,
process_group=
process_group)
dp_layer = paddle.DataParallel(layer,
group =
process_group)
loss_fn = nn.MSELoss()
adam = opt.Adam(
...
...
python/paddle/distributed/utils.py
浏览文件 @
5d1bbecb
...
...
@@ -686,6 +686,15 @@ def _prepare_trainer_env(cluster, trainer, backend=None):
"PADDLE_TRAINERS_NUM"
:
"%d"
%
cluster
.
trainers_nranks
(),
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
())
}
elif
backend
==
'cncl'
:
proc_env
=
{
"FLAGS_selected_mlus"
:
"%s"
%
","
.
join
([
str
(
g
)
for
g
in
trainer
.
gpus
]),
"PADDLE_TRAINER_ID"
:
"%d"
%
trainer
.
rank
,
"PADDLE_CURRENT_ENDPOINT"
:
"%s"
%
trainer
.
endpoint
,
"PADDLE_TRAINERS_NUM"
:
"%d"
%
cluster
.
trainers_nranks
(),
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
())
}
elif
backend
==
'gloo'
:
# NOTE (xiongkun) default fall back into cpu only
proc_env
=
{
...
...
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
浏览文件 @
5d1bbecb
...
...
@@ -7,12 +7,14 @@ if (WITH_MLU)
foreach
(
TEST_OP
${
TEST_DIST_OPS
}
)
LIST
(
REMOVE_ITEM TEST_OPS
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
LIST
(
REMOVE_ITEM TEST_OPS
"test_spawn_mlu"
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
if
(
WITH_CNCL
)
LIST
(
APPEND TEST_DIST_OPS
"test_spawn_mlu"
)
foreach
(
TEST_OP
${
TEST_DIST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
...
...
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
0 → 100644
浏览文件 @
5d1bbecb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
os
import
paddle
import
paddle.nn
as
nn
import
paddle.optimizer
as
opt
import
paddle.distributed
as
dist
from
paddle.distributed.spawn
import
_get_subprocess_env_list
,
_options_valid_check
,
_get_default_nprocs
from
paddle.fluid
import
core
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear1
=
nn
.
Linear
(
10
,
10
)
self
.
_linear2
=
nn
.
Linear
(
10
,
1
)
def
forward
(
self
,
x
):
return
self
.
_linear2
(
self
.
_linear1
(
x
))
def
train
(
print_result
=
False
):
# 1. initialize parallel environment
dist
.
init_parallel_env
()
# 2. create data parallel layer & optimizer
layer
=
LinearNet
()
dp_layer
=
paddle
.
DataParallel
(
layer
)
loss_fn
=
nn
.
MSELoss
()
adam
=
opt
.
Adam
(
learning_rate
=
0.001
,
parameters
=
dp_layer
.
parameters
())
# 3. run layer
inputs
=
paddle
.
randn
([
10
,
10
],
'float32'
)
outputs
=
dp_layer
(
inputs
)
labels
=
paddle
.
randn
([
10
,
1
],
'float32'
)
loss
=
loss_fn
(
outputs
,
labels
)
if
print_result
is
True
:
print
(
"Rank:"
,
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
)))
loss
.
backward
()
adam
.
step
()
adam
.
clear_grad
()
return
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
class
TestSpawn
(
unittest
.
TestCase
):
def
test_nprocs_greater_than_device_num_error
(
self
):
with
self
.
assertRaises
(
RuntimeError
):
_get_subprocess_env_list
(
nprocs
=
100
,
options
=
dict
())
def
test_selected_devices_error
(
self
):
with
self
.
assertRaises
(
ValueError
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101"
_get_subprocess_env_list
(
nprocs
=
2
,
options
=
options
)
def
test_get_correct_env
(
self
):
options
=
dict
()
options
[
'print_config'
]
=
True
env_dict
=
_get_subprocess_env_list
(
nprocs
=
1
,
options
=
options
)[
0
]
self
.
assertEqual
(
env_dict
[
'PADDLE_TRAINER_ID'
],
'0'
)
self
.
assertEqual
(
env_dict
[
'PADDLE_TRAINERS_NUM'
],
'1'
)
def
test_nprocs_not_equal_to_selected_devices
(
self
):
with
self
.
assertRaises
(
ValueError
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101,102"
_get_subprocess_env_list
(
nprocs
=
2
,
options
=
options
)
def
test_options_valid_check
(
self
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101,102"
_options_valid_check
(
options
)
with
self
.
assertRaises
(
ValueError
):
options
[
'error'
]
=
"error"
_options_valid_check
(
options
)
def
test_get_default_nprocs
(
self
):
paddle
.
set_device
(
'mlu'
)
nprocs
=
_get_default_nprocs
()
self
.
assertEqual
(
nprocs
,
core
.
get_mlu_device_count
())
def
test_spawn
(
self
):
context
=
dist
.
spawn
(
train
,
backend
=
'cncl'
,
nprocs
=
4
)
rank_list
=
[]
for
i
in
range
(
4
):
rank_list
.
append
(
context
.
return_queues
[
i
].
get
())
rank_list
.
sort
()
self
.
assertEqual
(
rank_list
,
list
(
range
(
4
)))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录