未验证 提交 5af64631 编写于 作者: B Baibaifan 提交者: GitHub

Add InternalStorage and add ShardingOptimizerStage2 (#37489)

上级 8bb1038c
...@@ -12,6 +12,6 @@ ...@@ -12,6 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
from .hybrid_parallel_optimizer import HybridParallelOptimizer from .hybrid_parallel_optimizer import HybridParallelOptimizer
from .hybrid_parallel_gradscaler import HybridParallelGradScaler from .hybrid_parallel_gradscaler import HybridParallelGradScaler
from .dygraph_sharding_optimizer import DygraphShardingOptimizer # from .dygraph_sharding_optimizer import DygraphShardingOptimizer
__all__ = [] __all__ = []
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -11,16 +11,35 @@ ...@@ -11,16 +11,35 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
#Taken and modified for fairscale from:
# https://github.com/facebookresearch/fairscale/blob/main/fairscale/optim/oss.py
#Commit: 8acbec718f3c70a6b9785470bb9e05cd84fc3f8e
###### import numpy as np
from itertools import chain
from functools import reduce from functools import reduce
from collections import OrderedDict
import paddle import paddle
from paddle import framework from paddle import framework
import paddle.distributed as dist
from paddle.optimizer import Optimizer
from ...utils.log_util import logger from ...utils.log_util import logger
from ...utils.internal_storage import ParamStorage
from ...meta_parallel.sharding.sharding_utils import Type
# CUDA alignment 256 bytes
alignment = {"gpu": 256, }
align = {
Type.fp16.value: 2,
Type.fp32.value: 4,
}
__all__ = ["ShardingOptimizerStage2"]
def _is_trainable(param: paddle.Tensor) -> bool: def _is_trainable(param):
return not param.stop_gradient return not param.stop_gradient
...@@ -41,13 +60,8 @@ class DygraphShardingOptimizer(object): ...@@ -41,13 +60,8 @@ class DygraphShardingOptimizer(object):
# 3. dynamic trainable params, which is the case bewteen pretraining and finetuning # 3. dynamic trainable params, which is the case bewteen pretraining and finetuning
# 4. option to choose fuse comm (more GPU MEM need) or un-fuse comm # 4. option to choose fuse comm (more GPU MEM need) or un-fuse comm
def __init__( def __init__(self, hcg, user_defined_strategy, params,
self, inner_optimizer_class, **inner_optimizer_kargs):
hcg,
user_defined_strategy,
params,
inner_optimizer_class,
**inner_optimizer_kargs, ):
if not isinstance(params, list): if not isinstance(params, list):
raise TypeError( raise TypeError(
...@@ -196,3 +210,245 @@ class DygraphShardingOptimizer(object): ...@@ -196,3 +210,245 @@ class DygraphShardingOptimizer(object):
def __getattr__(self, item): def __getattr__(self, item):
return getattr(self._inner_optimizer, item) return getattr(self._inner_optimizer, item)
class ShardingOptimizerStage2(Optimizer):
"""
A wrapper for Sharding Stage2 Optimizer in Dygraph.
.. warning: ShardingOptimizer encapsulates the optimization strategy and integrates it into the optimizer.
.. ZeRO: 1.https://arxiv.org/pdf/1910.02054.pdf 2.https://arxiv.org/pdf/1910.02054.pdf.
"""
# TODO (Baibaifan)
# Feature Notes:
# 1. Unified memory for parameters and parameters.grad to InternalStorage.
# 2. Support the segmentation of optimizer parameters and partial updating of parameters.
# 3. Dynamically adjust training parameters and models。
# 4. Support offload function.
# 5. Support the establishment of independent communication groups.
# 6. Broadcast_fp16 is not supported now.
def __init__(self,
params,
optim,
group,
broadcast_fp16=False,
offload=False,
device="gpu",
accumulation_steps=None,
**kw):
super().__init__(optim._learning_rate, params, kw)
# Segmentation information
self._dtype_rank_params = OrderedDict(
) # {dtype:[param1,param2]} device, rank, params
self._param2rank = {}
self._segment_params = []
self._rank_buffer_size = {} # {dtype: {rank: numel+alignment}}
self._param2align = {} # {param.name: align}
# Default information
self._optim_defaults = kw
self._optim = optim
self._local_params = params
self._default_device = device
self._accumulation_steps = accumulation_steps
assert group is not None, "Distributed communication group is must be gived"
self.group = group
self.world_size = group.nranks
self.rank = group.rank
self.broadcast_fp16 = broadcast_fp16
self.param_storages = {} # {dtype: {rank: InternalStorage}}
self.offload = offload # Using for offload
# Update optimizer parameters and adjust parameter storage and use according to rank.
self.update_opt_status()
def update_opt_status(self):
"""Update optimizer status and parameter storage information, and special functions to be developed.
"""
# func 1
self._integration_params()
# fun 2 TODO
# Segement helpers
def segment_params(self):
"""
Divide all optimizer parameters equally into rank.
"""
if len(self._segment_params) == 0:
self._segment_params, param_lists = [
[] for _ in range(self.world_size)
], [[] for _ in range(self.world_size)]
sizes = [0] * self.world_size
for param in self._local_params:
# Add this param to rank with smallest size.
rank = sizes.index(min(sizes))
param_lists[rank].append(param)
# Statistical real numels
sizes[rank] += np.prod(param.shape) if param.trainable else 0
for rank, params in enumerate(param_lists):
# param_group_rank = copy.copy(params)
self._segment_params[rank].extend(params)
return self._segment_params
@property
def local_params(self):
return self._local_params
@property
def accumulation_steps(self):
return self._accumulation_steps
@property
def param2rank(self):
"""Map the params to the rank which owns them"""
if len(self._param2rank) == 0:
for rank, params in enumerate(self.segment_params()):
for param in params:
self._param2rank[param.name] = rank
return self._param2rank
@property
def dtype_rank_params(self):
"""
Divide the parameters into groups according to rank and dtype.
"""
if len(self._dtype_rank_params) == 0:
# Assign the parameters of each rank according to the type
for param in self._local_params:
if param.dtype not in self._dtype_rank_params.keys():
self._dtype_rank_params[
param.dtype] = [[] for _ in range(self.world_size)]
self._dtype_rank_params[param.dtype][self.param2rank[
param.name]].append(param)
# Sort per rank params by size
for dtype in self._dtype_rank_params.keys():
for rank_params in self._dtype_rank_params[dtype]:
rank_params.sort(key=lambda x: np.prod(x.shape))
return self._dtype_rank_params
@property
def rank_buffer_size(self):
"""
Count the memory size of the parameters corresponding to rank under the corresponding dtype.
"""
# CUDA alignment 256 bytes
if len(self._rank_buffer_size) == 0:
for dtype in self.dtype_rank_params.keys():
if dtype not in self._rank_buffer_size.keys():
self._rank_buffer_size[dtype] = {}
for dst_rank, per_rank_params in enumerate(
self.dtype_rank_params[dtype]):
if dst_rank not in self._rank_buffer_size[dtype].keys():
self._rank_buffer_size[dtype][dst_rank] = 0
for param in per_rank_params:
if not param.trainable:
continue
size = np.prod(param.shape) * align[dtype]
remaining = size % alignment[self._default_device]
ali = 0 if remaining == 0 else alignment[
self._default_device] - remaining
align_ = ali // align[dtype]
self._rank_buffer_size[dtype][dst_rank] += np.prod(
param.shape) + align_
self._param2align[param.name] = align_
return self._rank_buffer_size
def _integration_params(self):
"""
Integrate the parameters into a continuous memory according to rank, and support the update of training parameters.
"""
for dtype, per_rank_params in self.dtype_rank_params.items():
if dtype not in self.param_storages.keys():
self.param_storages[dtype] = {}
for dst_rank, params in enumerate(per_rank_params):
if len(params) > 0:
# Merge all the trainable params in a single InternalStorage
trainable_params = list(
filter(lambda x: x.trainable, params))
if trainable_params:
param_storage = ParamStorage(
size=self.rank_buffer_size[dtype][dst_rank],
dtype=dtype,
device=self._default_device)
param_storage.add_rank_params(trainable_params,
self._param2align)
self.param_storages[dtype][dst_rank] = param_storage
# Clear the InternalStorage keys which are not in use anymore
dtype_in_use = list(self.dtype_rank_params.keys())
dtype_to_pop = list(
filter(lambda x: x not in dtype_in_use, self.param_storages.keys()))
for d in dtype_to_pop:
self.param_storages.pop(d)
def step(self):
"""
A wrapper for Optimizer's step function to finish the update operation of the optimizer.
"""
# Synchronize optimizer parameters for the current rank
if len(self.dtype_rank_params.keys(
)) == 1 and Type.fp32.value in self.dtype_rank_params.keys():
self._optim._parameter_list = self.dtype_rank_params[
Type.fp32.value][self.rank]
elif len(self.dtype_rank_params.keys(
)) == 1 and Type.fp16.value in self.dtype_rank_params.keys():
self._optim._parameter_list = self.dtype_rank_params[
Type.fp16.value][self.rank]
else:
self._optim._parameter_list = self.dtype_rank_params[
Type.fp16.value][self.rank] + self.dtype_rank_params[
Type.fp32.value][self.rank]
# Run the optimizer of the current rank step
self._optim.step()
# Synchronize all the updated shards in between the ranks
self._broadcast_params()
# Return full parameters to optimizer parameters
self._optim._parameter_list = self._local_params
def clear_cache(self):
self._segment_params.clear()
self._dtype_rank_params.clear()
self._param2rank.clear()
@paddle.no_grad()
def _broadcast_params(self):
"""Broadcast the parameters of the current rank to each rank"""
assert self._default_device == "gpu", "Only supported gpu"
# Exchange all the shards with the other ranks
for dtype_per_rank in self.param_storages.values():
for dst_rank, internal_storage in dtype_per_rank.items():
dist.broadcast(
tensor=internal_storage.buffer,
src=dst_rank,
group=self.group,
use_calc_stream=True)
# Multi stream operation will be supported later
dist.wait(
tensor=internal_storage.buffer,
group=self.group,
use_calc_stream=True)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .sharding_utils import GpuInfo
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import contextlib
from collections import abc
from enum import Enum
from math import inf
import paddle
import paddle.distributed as dist
from paddle.fluid import core
# Set global device id
global dev_id
if core.is_compiled_with_cuda():
dev_id = int(os.environ.get('FLAGS_selected_gpus', 0))
elif core.is_compiled_with_npu():
dev_id = int(os.environ.get('FLAGS_selected_npus', 0))
else:
raise ValueError("This device doesn't support.")
class Taskflow:
"""
Task flows, one way linked list for task acquisition.
"""
def __init__(self, task, callback):
self.task = task
self.callback = callback
class Type(Enum):
"""
Type of trainable parameters
"""
fp16 = paddle.float16
fp32 = paddle.float32
def GpuInfo(fn):
"""
Displays GPU usage information before and after the function。
"""
def used(*args, **kw):
# Before using
b_info = os.popen("nvidia-smi -i {} | grep MiB".format(str(
dev_id))).read()
before_info = (int(b_info.split()[8][:-3]),
int(b_info.split()[10][:-3]))
print(
"====== Current device {} ====== Total has {} MiB, Has used {} MiB ======".
format(str(dev_id), str(before_info[1]), str(before_info[0])))
result = fn(*args, **kw)
# After using
a_info = os.popen("nvidia-smi -i {} | grep MiB".format(str(
dev_id))).read()
after_info = (int(a_info.split()[8][:-3]), int(a_info.split()[10][:-3]))
print(
"====== Current device {} ====== Total has {} MiB, Has used {} MiB, Self use {} MiB ======".
format(
str(dev_id),
str(after_info[1]),
str(after_info[0]), str(after_info[0] - before_info[0])))
return result
return used
@contextlib.contextmanager
def device_guard(dev_id, device="cpu"):
origin_device = paddle.device.get_device()
if device == "cpu":
paddle.set_device(device)
elif device == "gpu":
paddle.set_device("gpu:{}".format(dev_id))
try:
yield
finally:
paddle.set_device(origin_device)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Taken and modified for fairscale from:
# https://github.com/facebookresearch/fairscale/blob/main/fairscale/nn/misc/param_bucket.py
#Commit: 8acbec718f3c70a6b9785470bb9e05cd84fc3f8e
import os
import time
import numpy as np
import paddle
from paddle.fluid import core
from ..meta_parallel.sharding.sharding_utils import Type, device_guard
# Set global device id
global dev_id
if core.is_compiled_with_cuda():
dev_id = int(os.environ.get('FLAGS_selected_gpus', 0))
elif core.is_compiled_with_npu():
dev_id = int(os.environ.get('FLAGS_selected_npus', 0))
else:
raise ValueError("This device doesn't support.")
class InternalStorage:
"""
This is a basic class, which is responsible for consolidating the basic storage tensor.
"""
# Support integration parameter tensor
def __init__(self, size, dtype, device, convert_cpu=False):
self._params = []
self._param_ids = []
self._fill = 0
self._device = device
self._dtype = dtype
# The actual flat tensor
size = [size] if isinstance(size, int) else size
if convert_cpu:
value = np.zeros(
size,
dtype=np.float16) if Type.fp16.value == dtype else np.zeros(
size, dtype=np.float32)
self.buffer = core.VarBase(value=value, place=core.CPUPlace())
else:
self.buffer = paddle.zeros(size, dtype=dtype)
class ParamStorage(InternalStorage):
"""
This is a basic class to simplify the handling of parameter InternalStorages.
"""
def __init__(self, size, dtype, device):
super().__init__(size, dtype, device, convert_cpu=True)
self.param2align = None
@paddle.no_grad()
def add_rank_params(self, trainable_params, param2align):
"""
Add new parameters to the InternalStorage. Params becomes a view of this InternalStorage buffer.
"""
assert all([
id(param) not in self._param_ids for param in trainable_params
]), "The same param cannot be checked in twice"
assert self.buffer is not None
self.param2align = param2align
cpu_param_shape = list()
for param in trainable_params:
p_shape = self._add_param_as_view(param, param2align[param.name])
cpu_param_shape.append(p_shape)
# buffer covert from cpu to cuda
self.buffer = self.buffer.cuda(dev_id)
self._fill = 0
for idx, param in enumerate(trainable_params):
self._convert_buffer(param, cpu_param_shape[idx],
param2align[param.name])
self._params.append(param)
self._param_ids.append(id(param))
@paddle.no_grad()
def _add_param_as_view(self, param, align):
assert (
param.dtype == self.buffer.dtype
), "Different types for the InternalStorage and the param, cannot proceed: {} - {}".format(
param.dtype, self.buffer.dtype)
var_end = self._fill + np.prod(param.shape)
offset = var_end + align
assert offset <= np.prod(self.buffer.shape)
p_shape = param.shape
origin_state = param.stop_gradient
param.stop_gradient = True
param.flatten_()
param.stop_gradient = origin_state
# Copy the current param value
with device_guard(dev_id, "cpu"):
tmp_var = core.VarBase(tensor=self.buffer._slice(self._fill,
var_end))
param_cpu = param.cpu()
param.value().get_tensor()._clear()
tmp_var.set_value(param_cpu)
self._fill = offset
return p_shape
@paddle.no_grad()
def _convert_buffer(self, param, p_shape, align):
var_end = self._fill + np.prod(p_shape)
offset = var_end + align
assert offset <= np.prod(self.buffer.shape)
# Convert the param value
tmp_tensor = self.buffer._slice(self._fill, var_end)
param.value().get_tensor()._share_data_with(tmp_tensor)
param.value().get_tensor()._set_dims(p_shape)
self._fill = offset
class GradStorage(InternalStorage):
"""
This is a basic class to simplify the handling of gradient InternalStorages
"""
def __init__(self, size, dtype, device, destination, parm2align):
if isinstance(size, np.int64):
size = size.tolist()
super().__init__(size, dtype, device)
self._max_size = size
self._release = False
self.params_checked_in = 0
self.destination = destination
self._parm2align = parm2align
self.sent = False
def reset_checked_in(self):
""" Reset the counter of the parameter grads which have been checked in
"""
self.params_checked_in = 0
self.sent = False
@property
def all_checked_in(self):
""" Judge all the expected gradient check-in happened """
return len(self._params) == self.params_checked_in
def can_add_grad_view(self, param, align):
""" Is there enough InternalStorage to add this parameter gradient, and whether this param have already checked in.
"""
return self._fill + np.prod(
param.shape) + align <= self._max_size and id(
param) not in self._param_ids
@paddle.no_grad()
def add_grad(self, param, align):
"""
Add a new parameter gradient to the InternalStorage. Param.grad becomes a view of this InternalStorage buffer.
"""
assert id(
param
) not in self._param_ids, "The same gradients cannot be checked in twice"
self._add_grad_as_view(param, align)
self._params.append(param)
self._param_ids.append(id(param))
@paddle.no_grad()
def manumal_relase(self):
"""
Release the buffer from InternalStorage. The InternalStorage will need to be rebuilt before use.
"""
if not self._release:
for p in self._params:
if p.grad is not None:
p.clear_gradient(False)
p._gradient_set_empty(False)
self.buffer = None
self._fill = 0
self.params_checked_in = 0
self._release = True
@paddle.no_grad()
def rebuild(self):
"""
Given the parameter gradients which have been registered previously, rebuild the whole InternalStorage.
"""
assert len(self._params) > 0
if self._release:
self.buffer = paddle.zeros(
[self._max_size], dtype=self._params[0].dtype)
for p in self._params:
self._add_grad_as_view(p, self._parm2align[p.name])
self._release = False
@paddle.no_grad()
def _add_grad_as_view(self, param, align):
assert np.prod(
self.buffer.shape
) > 0, "Cannot add a gradient to a released InternalStorage, please rebuild"
assert param.dtype == self.buffer.dtype
grad_end = self._fill + np.prod(param.shape)
offset = grad_end + align
assert offset <= np.prod(self.buffer.shape)
# Copy the current grad value to InternalStorage
assert self._device == "gpu"
tmp_var = core.VarBase(self.buffer._slice(self._fill, grad_end))
param._copy_gradient_from(tmp_var)
tmp_var.value().get_tensor()._clear()
self._fill = offset
...@@ -32,6 +32,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_dataparallel) ...@@ -32,6 +32,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_dataparallel)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_pipeline_parallel) list(APPEND DIST_TEST_OPS test_parallel_dygraph_pipeline_parallel)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_tensor_parallel) list(APPEND DIST_TEST_OPS test_parallel_dygraph_tensor_parallel)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_sharding_parallel) list(APPEND DIST_TEST_OPS test_parallel_dygraph_sharding_parallel)
list(APPEND DIST_TEST_OPS test_dygraph_sharding_optimizer_stage2)
list(APPEND DIST_TEST_OPS test_auto_parallel_parallelizer) list(APPEND DIST_TEST_OPS test_auto_parallel_parallelizer)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_mp_layers) list(APPEND DIST_TEST_OPS test_parallel_dygraph_mp_layers)
list(APPEND DIST_TEST_OPS test_hybrid_parallel_inference_helper) list(APPEND DIST_TEST_OPS test_hybrid_parallel_inference_helper)
...@@ -242,6 +243,7 @@ if ((NOT WITH_GPU) AND (NOT WITH_ROCM)) ...@@ -242,6 +243,7 @@ if ((NOT WITH_GPU) AND (NOT WITH_ROCM))
list(REMOVE_ITEM TEST_OPS test_parallel_dygraph_pipeline_parallel) list(REMOVE_ITEM TEST_OPS test_parallel_dygraph_pipeline_parallel)
list(REMOVE_ITEM TEST_OPS test_parallel_dygraph_tensor_parallel) list(REMOVE_ITEM TEST_OPS test_parallel_dygraph_tensor_parallel)
list(REMOVE_ITEM TEST_OPS test_parallel_dygraph_sharding_parallel) list(REMOVE_ITEM TEST_OPS test_parallel_dygraph_sharding_parallel)
list(REMOVE_ITEM TEST_OPS test_dygraph_sharding_optimizer_stage2)
list(REMOVE_ITEM TEST_OPS test_auto_parallel_parallelizer) list(REMOVE_ITEM TEST_OPS test_auto_parallel_parallelizer)
list(REMOVE_ITEM TEST_OPS test_parallel_dygraph_mp_layers) list(REMOVE_ITEM TEST_OPS test_parallel_dygraph_mp_layers)
LIST(REMOVE_ITEM TEST_OPS test_imperative_auto_mixed_precision) LIST(REMOVE_ITEM TEST_OPS test_imperative_auto_mixed_precision)
...@@ -1036,6 +1038,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL) ...@@ -1036,6 +1038,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL)
set_tests_properties(test_parallel_dygraph_pipeline_parallel PROPERTIES TIMEOUT 120) set_tests_properties(test_parallel_dygraph_pipeline_parallel PROPERTIES TIMEOUT 120)
set_tests_properties(test_parallel_dygraph_tensor_parallel PROPERTIES TIMEOUT 200) set_tests_properties(test_parallel_dygraph_tensor_parallel PROPERTIES TIMEOUT 200)
set_tests_properties(test_parallel_dygraph_sharding_parallel PROPERTIES TIMEOUT 120) set_tests_properties(test_parallel_dygraph_sharding_parallel PROPERTIES TIMEOUT 120)
set_tests_properties(test_dygraph_sharding_optimizer_stage2 PROPERTIES TIMEOUT 120)
set_tests_properties(test_auto_parallel_parallelizer PROPERTIES TIMEOUT 120) set_tests_properties(test_auto_parallel_parallelizer PROPERTIES TIMEOUT 120)
set_tests_properties(test_parallel_dygraph_mp_layers PROPERTIES TIMEOUT 120) set_tests_properties(test_parallel_dygraph_mp_layers PROPERTIES TIMEOUT 120)
set_tests_properties(test_hybrid_parallel_inference_helper PROPERTIES TIMEOUT 120) set_tests_properties(test_hybrid_parallel_inference_helper PROPERTIES TIMEOUT 120)
......
# -*- coding: UTF-8 -*-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import argparse
import ast
import time
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Linear
from paddle.distributed import fleet
from paddle.distributed.fleet.meta_parallel.sharding.sharding_utils import GpuInfo
from paddle.distributed.fleet.utils.internal_storage import GradStorage
from paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.dygraph_sharding_optimizer import ShardingOptimizerStage2
base_lr = 0.1
momentum_rate = 0.9
l2_decay = 1e-4
epoch = 100
batch_size = 32
class_dim = 102
class MLP(fluid.Layer):
def __init__(self, param_attr=None, bias_attr=None):
super(MLP, self).__init__()
self._linear1 = Linear(10, 10)
self._linear2 = Linear(10, 10)
def forward(self, inputs):
y = self._linear1(inputs)
y = self._linear2(y)
return y
def reader_decorator():
def __reader__():
for _ in range(100):
img = np.random.rand(10).astype('float32')
label = np.ones(1).astype('int64')
yield img, label
return __reader__
def optimizer_setting(parameter_list=None):
optimizer = paddle.optimizer.Momentum(
learning_rate=base_lr,
momentum=momentum_rate,
weight_decay=paddle.regularizer.L2Decay(l2_decay),
parameters=parameter_list)
return optimizer
@GpuInfo
def train_mlp():
fleet.init(is_collective=True)
group = paddle.distributed.new_group([0, 1])
mlp = MLP()
optimizer = optimizer_setting(parameter_list=mlp.parameters())
oss_optimizer = ShardingOptimizerStage2(
params=mlp.parameters(), optim=optimizer, group=group)
# cover grad_storage code
trainable_param2align = dict()
for p in mlp.parameters():
trainable_param2align[p.name] = 0
grad_storage = GradStorage(
10000,
dtype=paddle.float32,
device="gpu",
destination=0,
parm2align=trainable_param2align)
for p in mlp.parameters():
grad_storage.can_add_grad_view(p, trainable_param2align[p.name])
grad_storage.add_grad(p, trainable_param2align[p.name])
grad_storage.manumal_relase()
grad_storage.rebuild()
grad_storage.reset_checked_in()
train_reader = paddle.batch(
reader_decorator(), batch_size=batch_size, drop_last=True)
train_loader = paddle.io.DataLoader.from_generator(
capacity=32,
use_double_buffer=True,
iterable=True,
return_list=True,
use_multiprocess=True)
train_loader.set_sample_list_generator(train_reader)
for eop in range(epoch):
mlp.train()
for batch_id, data in enumerate(train_loader()):
img, label = data
label.stop_gradient = True
img.stop_gradient = True
out = mlp(img)
loss = paddle.nn.functional.cross_entropy(input=out, label=label)
avg_loss = paddle.mean(x=loss)
acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
dy_out = avg_loss.numpy()
avg_loss.backward()
oss_optimizer.step()
# oss_optimizer clear cache
oss_optimizer.clear_cache()
if __name__ == '__main__':
train_mlp()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from test_parallel_dygraph_dataparallel import TestMultipleGpus
class TestDygraphShardingOptimizerStage2(TestMultipleGpus):
# check sharding logic as well as the accuracy with single mode
def test_dygraph_sharding_optimizer_stage2(self):
self.run_mnist_2gpu('dygraph_sharding_optimizer_stage2.py')
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册