未验证 提交 5a3d1362 编写于 作者: C chengduo 提交者: GitHub

Merge pull request #5951 from chengduoZH/fix_conv_doc

fix conv and conv_trans op doc
...@@ -97,7 +97,7 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto, ...@@ -97,7 +97,7 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
.SetDefault({0, 0}); .SetDefault({0, 0});
AddAttr<int>( AddAttr<int>(
"groups", "groups",
"(int default:1), the group size of convolution operator. " "(int default:1), the groups number of the convolution operator. "
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: " "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"when group=2, the first half of the filters is only connected to the " "when group=2, the first half of the filters is only connected to the "
"first half of the input channels, while the second half of the filters " "first half of the input channels, while the second half of the filters "
...@@ -112,23 +112,29 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto, ...@@ -112,23 +112,29 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto,
Convolution Operator. Convolution Operator.
The convolution operation calculates the output based on the input, filter The convolution operation calculates the output based on the input, filter
and strides, paddings, groups, dilations parameters. The size of each dimension of the and strides, paddings, dilations, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape. parameters is checked in the infer-shape.
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch Input(Input) and Output(Output) are in NCHW format. Where N is batch
size, C is the number of channels, H is the height of the feature, and W is size, C is the number of channels, H is the height of the feature, and W is
the width of the feature. Parameters(ksize, strides, paddings, dilations) are two elements. the width of the feature.
These two elements represent height and width, respectively. Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
The input(X) size and output(Out) size may be different. The input(X) size and output(Out) size may be different.
Example: Example:
Input: Input:
Input shape: (N, C_in, H_in, W_in) Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: (C_out, C_in, H_f, W_f) Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
Output: Output:
Output shape: (N, C_out, H_out, W_out) Output shape: $(N, C_{out}, H_{out}, W_{out})$
where Where
H_out = (H_in + 2 * paddings[0] - (dilations[0]*(filter_size[0] - 1) + 1)) / strides[0] + 1; $$
W_out = (W_in + 2 * paddings[1] - (dilations[1]*(filter_size[1] - 1) + 1)) / strides[1] + 1; H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
)DOC"); )DOC");
} }
...@@ -165,7 +171,7 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto, ...@@ -165,7 +171,7 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
.SetDefault({0, 0, 0}); .SetDefault({0, 0, 0});
AddAttr<int>( AddAttr<int>(
"groups", "groups",
"(int default:1), the group size of convolution operator. " "(int default:1), the groups number of the convolution operator. "
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: " "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"when group=2, the first half of the filters is only connected to the " "when group=2, the first half of the filters is only connected to the "
"first half of the input channels, while the second half of the filters " "first half of the input channels, while the second half of the filters "
...@@ -174,32 +180,37 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto, ...@@ -174,32 +180,37 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
AddAttr<std::vector<int>>("dilations", AddAttr<std::vector<int>>("dilations",
"(vector<int> default:{1, 1, 1}), the " "(vector<int> default:{1, 1, 1}), the "
"dilations(d_dilation, h_dilation, w_dilation) of " "dilations(d_dilation, h_dilation, w_dilation) of "
"convolution operator. Currently, conv3d doesn't " "convolution operator.")
"support dilation.")
.SetDefault({1, 1, 1}); .SetDefault({1, 1, 1});
AddComment(R"DOC( AddComment(R"DOC(
Convolution3D Operator. Convolution3D Operator.
The convolution operation calculates the output based on the input, filter The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the and strides, paddings, dilations, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape. parameters is checked in the infer-shape.
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch Input(Input) and output(Output) are in NCDHW format, where N is batch
size, C is the number of channels,D is the depth of the feature, H is the height of size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(ksize, strides, paddings) the feature, and W is the width of the feature.
are three elements. These three elements represent depth, height and width, respectively. Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different. The input(X) size and output(Out) size may be different.
Example: Example:
Input: Input:
Input shape: (N, C_in, D_in, H_in, W_in) Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
Filter shape: (C_out, C_in, D_f, H_f, W_f) Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
Output: Output:
Output shape: (N, C_out, D_out, H_out, W_out) Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
where Where
D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1; $$
H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1; D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1; H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
$$
)DOC"); )DOC");
} }
......
...@@ -39,7 +39,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { ...@@ -39,7 +39,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
"ConvTransposeOp input dimension and strides dimension should " "ConvTransposeOp input dimension and strides dimension should "
"be consistent."); "be consistent.");
PADDLE_ENFORCE_EQ(paddings.size(), strides.size(), PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
"ConvTransposeOp paddings dimension and Conv strides " "ConvTransposeOp paddings dimension and strides "
"dimension should be the same."); "dimension should be the same.");
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0], PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
"In ConvTransposeOp, The input channel should be the same " "In ConvTransposeOp, The input channel should be the same "
...@@ -62,13 +62,14 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( ...@@ -62,13 +62,14 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
"The format of input tensor is NCHW. Where N is batch size, C is the " "The format of input tensor is NCHW. Where N is batch size, C is the "
"number of input channels, H is the height of the feature, and " "number of input channels, H is the height of the feature, and "
"W is the width of the feature."); "W is the width of the feature.");
AddInput("Filter", AddInput(
"(Tensor) The filter tensor of convolution transpose operator. " "Filter",
"The format of the filter tensor is CMHW, where C is the number of " "(Tensor) The filter tensor of convolution transpose operator. "
"output image channels, M is the number of input image channels, " "The format of the filter tensor is MCHW, where M is the number of "
"H is the height of the filter, and W is the width of the filter. " "input feature channels, C is the number of "
"We enforce groups number == 1 and padding == 0 in " "output feature channels,"
"the convolution transpose scenario."); "H is the height of the filter, and W is the width of the filter. "
"We enforce groups number == 1 in the convolution transpose scenario.");
AddOutput("Output", AddOutput("Output",
"(Tensor) The output tensor of convolution transpose operator. " "(Tensor) The output tensor of convolution transpose operator. "
"The format of output tensor is also NCHW."); "The format of output tensor is also NCHW.");
...@@ -88,21 +89,26 @@ Convolution2D Transpose Operator. ...@@ -88,21 +89,26 @@ Convolution2D Transpose Operator.
The convolution transpose operation calculates the output based on the input, filter The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape. parameters is checked in the infer-shape.
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch number of channels, H is the height of the feature, and W is the width of the feature.
size, C is the number of channels, H is the height of the feature, and Filter(Input) is in MCHW format. Where M is the number of input feature channels,
W is the width of the feature. Parameters(ksize, strides, paddings) are two elements. C is the number of output feature channels, H is the height of the filter,
These two elements represent height and width, respectively. and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
The input(X) size and output(Out) size may be different. The input(X) size and output(Out) size may be different.
Example: Example:
Input: Input:
Input shape: (N, C_in, H_in, W_in) Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: (C_in, C_out, H_f, W_f) Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
Output: Output:
Output shape: (N, C_out, H_out, W_out) Output shape: $(N, C_{out}, H_{out}, W_{out})$
where Where
H_out = (H_in - 1) * strides[0] - 2 * paddings[0] + H_f; $$
W_out = (W_in - 1) * strides[1] - 2 * paddings[1] + W_f; H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + H_f \\
W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + W_f
$$
)DOC"); )DOC");
} }
...@@ -117,8 +123,9 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( ...@@ -117,8 +123,9 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(
"W is the width of the feature."); "W is the width of the feature.");
AddInput("Filter", AddInput("Filter",
"(Tensor) The filter tensor of convolution transpose operator." "(Tensor) The filter tensor of convolution transpose operator."
"The format of the filter tensor is CMDHW, where C is the number of " "The format of the filter tensor is MCDHW, where M is the number of "
"output image channels, M is the number of input image channels, D " "input feature channels, C is the number of "
"output feature channels, D "
"is the depth of the filter, H is the height of the filter, and " "is the depth of the filter, H is the height of the filter, and "
"W is the width of the filter." "W is the width of the filter."
"We enforce groups number == 1 and padding == 0 in " "We enforce groups number == 1 and padding == 0 in "
...@@ -144,23 +151,28 @@ Convolution3D Transpose Operator. ...@@ -144,23 +151,28 @@ Convolution3D Transpose Operator.
The convolution transpose operation calculates the output based on the input, filter The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape. parameters is checked in the infer-shape.
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch number of channels, D is the depth of the feature, H is the height of the feature,
size, C is the number of channels, D is the depth of the feature, and W is the width of the feature.
H is the height of the feature, and W is the width of the feature. Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
Parameters(ksize, strides, paddings) are three elements. C is the number of output feature channels, D is the depth of the filter,H is the
These three elements represent depth, height and width, respectively. height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
The input(X) size and output(Out) size may be different. The input(X) size and output(Out) size may be different.
Example:
Example:
Input: Input:
Input shape: (N, C_in, D_in, H_in, W_in) Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
Filter shape: (C_in, C_out, D_f, H_f, W_f) Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
Output: Output:
Output shape: (N, C_out, D_out, H_out, W_out) Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
where Where
D_out = (D_in - 1) * strides[0] - 2 * paddings[0] + D_f; $$
H_out = (H_in - 1) * strides[1] - 2 * paddings[1] + H_f; D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + D_f \\
W_out = (W_in - 1) * strides[2] - 2 * paddings[2] + W_f; H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + H_f \\
W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + W_f
$$
)DOC"); )DOC");
} }
......
...@@ -63,7 +63,6 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> { ...@@ -63,7 +63,6 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings"); std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
// TODO(Zhuoyuan): Paddings can be added in future.
// groups will alway be disabled in conv2dtranspose. // groups will alway be disabled in conv2dtranspose.
const int batch_size = static_cast<int>(input->dims()[0]); const int batch_size = static_cast<int>(input->dims()[0]);
......
...@@ -105,7 +105,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, ...@@ -105,7 +105,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"paddings", "paddings",
"(vector<int>, defalut {0,0}), paddings(height, width) of pooling " "(vector<int>, default {0,0}), paddings(height, width) of pooling "
"operator." "operator."
"If global_pooling = true, paddings and ksize will be ignored.") "If global_pooling = true, paddings and ksize will be ignored.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
...@@ -122,15 +122,15 @@ Parameters(ksize, strides, paddings) are two elements. ...@@ -122,15 +122,15 @@ Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively. These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different. The input(X) size and output(Out) size may be different.
Example: Example:
Input: Input:
X shape: $(N, C, H_{in}, W_{in})$ X shape: $(N, C, H_{in}, W_{in})$
Output: Output:
Out shape: $(N, C, H_{out}, W_{out})$ Out shape: $(N, C, H_{out}, W_{out})$
where Where
$$ $$
H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\ H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$ $$
)DOC"); )DOC");
...@@ -177,7 +177,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, ...@@ -177,7 +177,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"paddings", "paddings",
"(vector<int>, defalut {0,0,0}), paddings(depth, height, " "(vector<int>, default {0,0,0}), paddings(depth, height, "
"width) of pooling operator. " "width) of pooling operator. "
"If global_pooling = true, ksize and paddings will be ignored.") "If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
...@@ -199,12 +199,12 @@ Example: ...@@ -199,12 +199,12 @@ Example:
X shape: $(N, C, D_{in}, H_{in}, W_{in})$ X shape: $(N, C, D_{in}, H_{in}, W_{in})$
Output: Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$ Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
where Where
$$ $$
D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\ D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\ H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1 W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$ $$
)DOC"); )DOC");
} }
......
...@@ -142,7 +142,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -142,7 +142,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"paddings", "paddings",
"(vector<int>, defalut:{0, 0}), paddings(height, width) of pooling " "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
"operator. " "operator. "
"If global_pooling = true, paddings and will be ignored.") "If global_pooling = true, paddings and will be ignored.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
...@@ -166,10 +166,10 @@ Example: ...@@ -166,10 +166,10 @@ Example:
Output: Output:
Out shape: $(N, C, H_{out}, W_{out})$ Out shape: $(N, C, H_{out}, W_{out})$
Mask shape: $(N, C, H_{out}, W_{out})$ Mask shape: $(N, C, H_{out}, W_{out})$
where Where
$$ $$
H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\ H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$ $$
)DOC"); )DOC");
...@@ -220,7 +220,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -220,7 +220,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"paddings", "paddings",
"(vector, defalut {0,0,0}), paddings(depth, " "(vector, default {0,0,0}), paddings(depth, "
"height, width) of pooling operator. " "height, width) of pooling operator. "
"If global_pooling = true, paddings and ksize will be ignored.") "If global_pooling = true, paddings and ksize will be ignored.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
...@@ -244,11 +244,11 @@ Example: ...@@ -244,11 +244,11 @@ Example:
Output: Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$ Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$ Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
where Where
$$ $$
D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\ D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\ H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1 W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$ $$
)DOC"); )DOC");
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册