Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
577424e5
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
577424e5
编写于
1月 28, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use darknet loss and trick
上级
042fecef
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
26 addition
and
114 deletion
+26
-114
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+0
-18
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+17
-55
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+0
-13
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+8
-27
未找到文件。
paddle/fluid/API.spec
浏览文件 @
577424e5
...
...
@@ -324,7 +324,7 @@ paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes',
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', '
gtscore', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(True,
None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', '
anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample', 'name'], varargs=None, keywords=None, defaults=(
None,))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
...
...
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
577424e5
...
...
@@ -27,8 +27,6 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"Input(GTBox) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GTLabel"
),
"Input(GTLabel) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GTScore"
),
"Input(GTScore) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Loss"
),
"Output(Loss) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
...
...
@@ -40,7 +38,6 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_gtbox
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
dim_gtlabel
=
ctx
->
GetInputDim
(
"GTLabel"
);
auto
dim_gtscore
=
ctx
->
GetInputDim
(
"GTScore"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
anchor_mask
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
...
...
@@ -63,12 +60,6 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"Input(GTBox) and Input(GTLabel) dim[0] should be same"
);
PADDLE_ENFORCE_EQ
(
dim_gtlabel
[
1
],
dim_gtbox
[
1
],
"Input(GTBox) and Input(GTLabel) dim[1] should be same"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
.
size
(),
2
,
"Input(GTScore) should be a 2-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
0
],
dim_gtbox
[
0
],
"Input(GTBox) and Input(GTScore) dim[0] should be same"
);
PADDLE_ENFORCE_EQ
(
dim_gtscore
[
1
],
dim_gtbox
[
1
],
"Input(GTBox) and Input(GTScore) dim[1] should be same"
);
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
"Attr(anchors) length should be greater then 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
...
...
@@ -121,11 +112,6 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"This is a 2-D tensor with shape of [N, max_box_num], "
"and each element should be an integer to indicate the "
"box class id."
);
AddInput
(
"GTScore"
,
"The score of GTLabel, This is a 2-D tensor in same shape "
"GTLabel, and score values should in range (0, 1). This "
"input is for GTLabel score can be not 1.0 in image mixup "
"augmentation."
);
AddOutput
(
"Loss"
,
"The output yolov3 loss tensor, "
"This is a 1-D tensor with shape of [N]"
);
...
...
@@ -157,8 +143,6 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
)
.
SetDefault
(
0.7
);
AddAttr
<
bool
>
(
"use_label_smooth"
,
"bool,default True"
,
"use label smooth"
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
This operator generate yolov3 loss by given predict result and ground
truth boxes.
...
...
@@ -245,7 +229,6 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"GTBox"
,
Input
(
"GTBox"
));
op
->
SetInput
(
"GTLabel"
,
Input
(
"GTLabel"
));
op
->
SetInput
(
"GTScore"
,
Input
(
"GTScore"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetInput
(
"ObjectnessMask"
,
Output
(
"ObjectnessMask"
));
op
->
SetInput
(
"GTMatchMask"
,
Output
(
"GTMatchMask"
));
...
...
@@ -255,7 +238,6 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"GTBox"
),
{});
op
->
SetOutput
(
framework
::
GradVarName
(
"GTLabel"
),
{});
op
->
SetOutput
(
framework
::
GradVarName
(
"GTScore"
),
{});
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
577424e5
...
...
@@ -36,11 +36,6 @@ static T SCE(T x, T label) {
return
(
x
>
0
?
x
:
0.0
)
-
x
*
label
+
std
::
log
(
1.0
+
std
::
exp
(
-
std
::
abs
(
x
)));
}
template
<
typename
T
>
static
T
L1Loss
(
T
x
,
T
y
)
{
return
std
::
abs
(
y
-
x
);
}
template
<
typename
T
>
static
T
L2Loss
(
T
x
,
T
y
)
{
return
0.5
*
(
y
-
x
)
*
(
y
-
x
);
...
...
@@ -51,11 +46,6 @@ static T SCEGrad(T x, T label) {
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
))
-
label
;
}
template
<
typename
T
>
static
T
L1LossGrad
(
T
x
,
T
y
)
{
return
x
>
y
?
1.0
:
-
1.0
;
}
template
<
typename
T
>
static
T
L2LossGrad
(
T
x
,
T
y
)
{
return
x
-
y
;
...
...
@@ -131,13 +121,13 @@ template <typename T>
static
void
CalcBoxLocationLoss
(
T
*
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
int
input_size
,
int
stride
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
);
loss
[
0
]
+=
SCE
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
;
loss
[
0
]
+=
SCE
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
;
loss
[
0
]
+=
L2Loss
<
T
>
(
input
[
box_idx
+
2
*
stride
],
tw
)
*
scale
;
...
...
@@ -148,14 +138,13 @@ template <typename T>
static
void
CalcBoxLocationLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
Box
<
T
>
gt
,
std
::
vector
<
int
>
anchors
,
int
an_idx
,
int
box_idx
,
int
gi
,
int
gj
,
int
grid_size
,
int
input_size
,
int
stride
,
T
score
)
{
int
grid_size
,
int
input_size
,
int
stride
)
{
T
tx
=
gt
.
x
*
grid_size
-
gi
;
T
ty
=
gt
.
y
*
grid_size
-
gj
;
T
tw
=
std
::
log
(
gt
.
w
*
input_size
/
anchors
[
2
*
an_idx
]);
T
th
=
std
::
log
(
gt
.
h
*
input_size
/
anchors
[
2
*
an_idx
+
1
]);
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
)
*
score
;
T
scale
=
(
2.0
-
gt
.
w
*
gt
.
h
);
input_grad
[
box_idx
]
=
SCEGrad
<
T
>
(
input
[
box_idx
],
tx
)
*
scale
*
loss
;
input_grad
[
box_idx
+
stride
]
=
SCEGrad
<
T
>
(
input
[
box_idx
+
stride
],
ty
)
*
scale
*
loss
;
...
...
@@ -168,11 +157,10 @@ static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
template
<
typename
T
>
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
loss
[
0
]
+=
SCE
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
;
loss
[
0
]
+=
SCE
<
T
>
(
pred
,
(
i
==
label
)
?
1.0
:
0.0
)
;
}
}
...
...
@@ -180,12 +168,11 @@ template <typename T>
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
,
T
score
)
{
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
input_grad
[
index
+
i
*
stride
]
=
SCEGrad
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
score
*
loss
;
SCEGrad
<
T
>
(
pred
,
(
i
==
label
)
?
1.0
:
0.0
)
*
loss
;
}
}
...
...
@@ -201,7 +188,7 @@ static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
// positive sample: obj = mixup score
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
;
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
1.0
);
}
else
if
(
obj
>
-
0.5
)
{
// negetive sample: obj = 0
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
0.0
);
...
...
@@ -226,8 +213,7 @@ static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
1e-5
)
{
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
obj
*
loss
[
i
];
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
1.0
)
*
loss
[
i
];
}
else
if
(
obj
>
-
0.5
)
{
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
0.0
)
*
loss
[
i
];
}
...
...
@@ -263,7 +249,6 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
*
objness_mask
=
ctx
.
Output
<
Tensor
>
(
"ObjectnessMask"
);
auto
*
gt_match_mask
=
ctx
.
Output
<
Tensor
>
(
"GTMatchMask"
);
...
...
@@ -272,7 +257,6 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
int
downsample
=
ctx
.
Attr
<
int
>
(
"downsample"
);
bool
use_label_smooth
=
ctx
.
Attr
<
bool
>
(
"use_label_smooth"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
...
...
@@ -285,17 +269,9 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
label_pos
=
1.0
-
1.0
/
static_cast
<
T
>
(
class_num
);
label_neg
=
1.0
/
static_cast
<
T
>
(
class_num
);
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
T
*
gt_score_data
=
gt_score
->
data
<
T
>
();
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
memset
(
loss_data
,
0
,
loss
->
numel
()
*
sizeof
(
T
));
T
*
obj_mask_data
=
...
...
@@ -376,20 +352,19 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
int
mask_idx
=
GetMaskIndex
(
anchor_mask
,
best_n
);
gt_match_mask_data
[
i
*
b
+
t
]
=
mask_idx
;
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
obj_mask_data
[
obj_idx
]
=
score
;
obj_mask_data
[
obj_idx
]
=
1.0
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
class_num
,
stride
);
}
}
}
...
...
@@ -406,7 +381,6 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
objness_mask
=
ctx
.
Input
<
Tensor
>
(
"ObjectnessMask"
);
...
...
@@ -415,7 +389,6 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
anchor_mask
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchor_mask"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
downsample
=
ctx
.
Attr
<
int
>
(
"downsample"
);
bool
use_label_smooth
=
ctx
.
Attr
<
bool
>
(
"use_label_smooth"
);
const
int
n
=
input_grad
->
dims
()[
0
];
const
int
c
=
input_grad
->
dims
()[
1
];
...
...
@@ -428,17 +401,9 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
label_pos
=
1.0
-
1.0
/
static_cast
<
T
>
(
class_num
);
label_neg
=
1.0
/
static_cast
<
T
>
(
class_num
);
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
T
*
gt_score_data
=
gt_score
->
data
<
T
>
();
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
const
T
*
obj_mask_data
=
objness_mask
->
data
<
T
>
();
const
int
*
gt_match_mask_data
=
gt_match_mask
->
data
<
int
>
();
...
...
@@ -450,24 +415,21 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
for
(
int
t
=
0
;
t
<
b
;
t
++
)
{
int
mask_idx
=
gt_match_mask_data
[
i
*
b
+
t
];
if
(
mask_idx
>=
0
)
{
T
score
=
gt_score_data
[
i
*
b
+
t
];
Box
<
T
>
gt
=
GetGtBox
(
gt_box_data
,
i
,
b
,
t
);
int
gi
=
static_cast
<
int
>
(
gt
.
x
*
w
);
int
gj
=
static_cast
<
int
>
(
gt
.
y
*
h
);
int
box_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
0
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
,
score
);
CalcBoxLocationLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
gt
,
anchors
,
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
int
label
=
gt_label_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
,
score
);
label_idx
,
label
,
class_num
,
stride
);
}
}
}
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
577424e5
...
...
@@ -412,13 +412,11 @@ def polygon_box_transform(input, name=None):
def
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
gtscore
,
anchors
,
anchor_mask
,
class_num
,
ignore_thresh
,
downsample
,
use_label_smooth
=
True
,
name
=
None
):
"""
${comment}
...
...
@@ -432,14 +430,11 @@ def yolov3_loss(x,
an image.
gtlabel (Variable): class id of ground truth boxes, shoud be in shape
of [N, B].
gtscore (Variable): score of gtlabel, should be in same shape with gtlabel
and score value in range (0, 1).
anchors (list|tuple): ${anchors_comment}
anchor_mask (list|tuple): ${anchor_mask_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
downsample (int): ${downsample_comment}
use_label_smooth(bool): ${use_label_smooth_comment}
name (string): the name of yolov3 loss
Returns:
...
...
@@ -449,11 +444,9 @@ def yolov3_loss(x,
TypeError: Input x of yolov3_loss must be Variable
TypeError: Input gtbox of yolov3_loss must be Variable"
TypeError: Input gtlabel of yolov3_loss must be Variable"
TypeError: Input gtscore of yolov3_loss must be Variable"
TypeError: Attr anchors of yolov3_loss must be list or tuple
TypeError: Attr class_num of yolov3_loss must be an integer
TypeError: Attr ignore_thresh of yolov3_loss must be a float number
TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
Examples:
.. code-block:: python
...
...
@@ -474,16 +467,12 @@ def yolov3_loss(x,
raise
TypeError
(
"Input gtbox of yolov3_loss must be Variable"
)
if
not
isinstance
(
gtlabel
,
Variable
):
raise
TypeError
(
"Input gtlabel of yolov3_loss must be Variable"
)
if
not
isinstance
(
gtscore
,
Variable
):
raise
TypeError
(
"Input gtscore of yolov3_loss must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
anchor_mask
,
list
)
and
not
isinstance
(
anchor_mask
,
tuple
):
raise
TypeError
(
"Attr anchor_mask of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
class_num
,
int
):
raise
TypeError
(
"Attr class_num of yolov3_loss must be an integer"
)
if
not
isinstance
(
use_label_smooth
,
bool
):
raise
TypeError
(
"Attr ues_label_smooth of yolov3 must be a bool value"
)
if
not
isinstance
(
ignore_thresh
,
float
):
raise
TypeError
(
"Attr ignore_thresh of yolov3_loss must be a float number"
)
...
...
@@ -503,7 +492,6 @@ def yolov3_loss(x,
"class_num"
:
class_num
,
"ignore_thresh"
:
ignore_thresh
,
"downsample"
:
downsample
,
"use_label_smooth"
:
use_label_smooth
}
helper
.
append_op
(
...
...
@@ -512,7 +500,6 @@ def yolov3_loss(x,
"X"
:
x
,
"GTBox"
:
gtbox
,
"GTLabel"
:
gtlabel
,
"GTScore"
:
gtscore
},
outputs
=
{
'Loss'
:
loss
,
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
577424e5
...
...
@@ -23,10 +23,6 @@ from op_test import OpTest
from
paddle.fluid
import
core
def
l1loss
(
x
,
y
):
return
abs
(
x
-
y
)
def
l2loss
(
x
,
y
):
return
0.5
*
(
y
-
x
)
*
(
y
-
x
)
...
...
@@ -70,7 +66,7 @@ def batch_xywh_box_iou(box1, box2):
return
inter_area
/
union
def
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
gtscore
,
attrs
):
def
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
b
=
gtbox
.
shape
[
1
]
anchors
=
attrs
[
'anchors'
]
...
...
@@ -80,14 +76,10 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
class_num
=
attrs
[
"class_num"
]
ignore_thresh
=
attrs
[
'ignore_thresh'
]
downsample
=
attrs
[
'downsample'
]
use_label_smooth
=
attrs
[
'use_label_smooth'
]
input_size
=
downsample
*
h
x
=
x
.
reshape
((
n
,
mask_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
loss
=
np
.
zeros
((
n
)).
astype
(
'float32'
)
label_pos
=
1.0
-
1.0
/
class_num
if
use_label_smooth
else
1.0
label_neg
=
1.0
/
class_num
if
use_label_smooth
else
0.0
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
...
...
@@ -146,22 +138,21 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
ty
=
gtbox
[
i
,
j
,
1
]
*
w
-
gj
tw
=
np
.
log
(
gtbox
[
i
,
j
,
2
]
*
input_size
/
mask_anchors
[
an_idx
][
0
])
th
=
np
.
log
(
gtbox
[
i
,
j
,
3
]
*
input_size
/
mask_anchors
[
an_idx
][
1
])
scale
=
(
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
])
*
gtscore
[
i
,
j
]
scale
=
(
2.0
-
gtbox
[
i
,
j
,
2
]
*
gtbox
[
i
,
j
,
3
])
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
0
],
tx
)
*
scale
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
1
],
ty
)
*
scale
loss
[
i
]
+=
l2loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l2loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
3
],
th
)
*
scale
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
gtscore
[
i
,
j
]
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
1.0
for
label_idx
in
range
(
class_num
):
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
label_pos
if
label_idx
==
gtlabel
[
i
,
j
]
else
label_neg
)
*
gtscore
[
i
,
j
]
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
float
(
label_idx
==
gtlabel
[
i
,
j
]))
for
j
in
range
(
mask_num
*
h
*
w
):
if
objness
[
i
,
j
]
>
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
1.0
)
*
objness
[
i
,
j
]
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
1.0
)
elif
objness
[
i
,
j
]
==
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
0.0
)
...
...
@@ -176,7 +167,6 @@ class TestYolov3LossOp(OpTest):
x
=
logit
(
np
.
random
.
uniform
(
0
,
1
,
self
.
x_shape
).
astype
(
'float32'
))
gtbox
=
np
.
random
.
random
(
size
=
self
.
gtbox_shape
).
astype
(
'float32'
)
gtlabel
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
])
gtscore
=
np
.
random
.
random
(
self
.
gtbox_shape
[:
2
]).
astype
(
'float32'
)
gtmask
=
np
.
random
.
randint
(
0
,
2
,
self
.
gtbox_shape
[:
2
])
gtbox
=
gtbox
*
gtmask
[:,
:,
np
.
newaxis
]
gtlabel
=
gtlabel
*
gtmask
...
...
@@ -187,17 +177,14 @@ class TestYolov3LossOp(OpTest):
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"downsample"
:
self
.
downsample
,
"use_label_smooth"
:
self
.
use_label_smooth
,
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
.
astype
(
'float32'
),
'GTLabel'
:
gtlabel
.
astype
(
'int32'
),
'GTScore'
:
gtscore
.
astype
(
'float32'
)
}
loss
,
objness
,
gt_matches
=
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
gtscore
,
self
.
attrs
)
loss
,
objness
,
gt_matches
=
YOLOv3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)
self
.
outputs
=
{
'Loss'
:
loss
,
'ObjectnessMask'
:
objness
,
...
...
@@ -213,7 +200,7 @@ class TestYolov3LossOp(OpTest):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
,
"GTScore"
]),
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
]),
max_relative_error
=
0.3
)
def
initTestCase
(
self
):
...
...
@@ -224,12 +211,6 @@ class TestYolov3LossOp(OpTest):
self
.
downsample
=
32
self
.
x_shape
=
(
3
,
len
(
self
.
anchor_mask
)
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
self
.
use_label_smooth
=
True
class
TestYolov3LossWithoutLabelSmooth
(
TestYolov3LossOp
):
def
set_label_smooth
(
self
):
self
.
use_label_smooth
=
False
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录