未验证 提交 56fa3880 编写于 作者: W Wojciech Uss 提交者: GitHub

rename qat into quant in filenames only (#25194)

test=develop
上级 02adf68d
......@@ -319,7 +319,7 @@ if(WITH_MKLDNN)
set(QAT_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/qat")
set(QAT_IMG_CLASS_TEST_APP "test_analyzer_qat_image_classification")
set(QAT_IMG_CLASS_TEST_APP_SRC "analyzer_qat_image_classification_tester.cc")
set(QAT_IMG_CLASS_TEST_APP_SRC "analyzer_quant_image_classification_tester.cc")
# build test binary to be used in subsequent tests
inference_analysis_api_test_build(${QAT_IMG_CLASS_TEST_APP} ${QAT_IMG_CLASS_TEST_APP_SRC})
......
......@@ -20,15 +20,15 @@ from . import quantization_strategy
from .quantization_strategy import *
from . import mkldnn_post_training_strategy
from .mkldnn_post_training_strategy import *
from . import qat_int8_mkldnn_pass
from .qat_int8_mkldnn_pass import *
from . import qat2_int8_mkldnn_pass
from .qat2_int8_mkldnn_pass import *
from . import quant_int8_mkldnn_pass
from .quant_int8_mkldnn_pass import *
from . import quant2_int8_mkldnn_pass
from .quant2_int8_mkldnn_pass import *
from . import post_training_quantization
from .post_training_quantization import *
__all__ = quantization_pass.__all__ + quantization_strategy.__all__
__all__ += mkldnn_post_training_strategy.__all__
__all__ += qat_int8_mkldnn_pass.__all__
__all__ += qat2_int8_mkldnn_pass.__all__
__all__ += quant_int8_mkldnn_pass.__all__
__all__ += quant2_int8_mkldnn_pass.__all__
__all__ += post_training_quantization.__all__
......@@ -44,7 +44,7 @@ function(download_qat_fp32_model install_dir data_file)
endfunction()
function(inference_qat_int8_image_classification_test target qat_model_dir dataset_path)
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/qat_int8_image_classification_comparison.py"
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant_int8_image_classification_comparison.py"
ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
......@@ -58,7 +58,7 @@ endfunction()
# set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 25
function(inference_qat2_int8_image_classification_test target qat_model_dir fp32_model_dir dataset_path ops_to_quantize)
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/qat2_int8_image_classification_comparison.py"
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_image_classification_comparison.py"
ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
......@@ -73,7 +73,7 @@ endfunction()
# set batch_size 10 for UT only (avoid OOM). For whole dataset, use batch_size 20
function(inference_qat2_int8_nlp_test target qat_model_dir fp32_model_dir dataset_path labels_path)
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/qat2_int8_nlp_comparison.py"
py_test(${target} SRCS "${CMAKE_CURRENT_SOURCE_DIR}/quant2_int8_nlp_comparison.py"
ENVS FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI}
FLAGS_use_mkldnn=true
......@@ -99,7 +99,7 @@ function(download_qat_model install_dir data_file)
endfunction()
function(save_qat_ic_model_test target qat_model_dir fp32_model_save_path int8_model_save_path ops_to_quantize)
py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_qat_model.py
py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py
ARGS --qat_model_path ${qat_model_dir}
--fp32_model_save_path ${fp32_model_save_path}
--int8_model_save_path ${int8_model_save_path}
......@@ -107,7 +107,7 @@ function(save_qat_ic_model_test target qat_model_dir fp32_model_save_path int8_m
endfunction()
function(save_qat_nlp_model_test target qat_model_dir fp32_model_save_path int8_model_save_path)
py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_qat_model.py
py_test(${target} SRCS ${CMAKE_CURRENT_SOURCE_DIR}/save_quant_model.py
ARGS --qat_model_path ${qat_model_dir}
--fp32_model_save_path ${fp32_model_save_path}
--int8_model_save_path ${int8_model_save_path})
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册