Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
56ddd7c2
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
56ddd7c2
编写于
6月 30, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
6月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove decrease_axis in op_teller.cc , support them in slice (#43963)
上级
73f957cf
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
146 addition
and
16 deletion
+146
-16
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
+1
-1
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
+16
-0
paddle/fluid/inference/tensorrt/convert/slice_op.cc
paddle/fluid/inference/tensorrt/convert/slice_op.cc
+23
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+3
-8
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
...ts/unittests/ir/inference/test_trt_convert_elementwise.py
+103
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_slice.py
...id/tests/unittests/ir/inference/test_trt_convert_slice.py
+0
-7
未找到文件。
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
浏览文件 @
56ddd7c2
...
...
@@ -169,7 +169,7 @@ class BatchNormOpConverter : public OpConverter {
engine_
->
SetWeights
(
op_desc
.
Input
(
"Scale"
).
front
(),
std
::
move
(
combile_scale_tensor
));
if
(
x_dim
.
nbDims
<
3
+
dynamic_shape_offset
)
{
layer
->
getOutput
(
0
)
->
setName
(
"batch_norm_out"
);
layer
->
getOutput
(
0
)
->
setName
(
(
"BN: ScaleNd: "
+
output_name
).
c_str
()
);
layer
->
setName
((
"BN: ScaleNd: (Output: "
+
output_name
+
")"
).
c_str
());
nvinfer1
::
Dims
squeeze_shape
;
squeeze_shape
.
nbDims
=
x_dim
.
nbDims
;
...
...
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
浏览文件 @
56ddd7c2
...
...
@@ -44,6 +44,22 @@ class ElementwiseTensorOpConverter : public OpConverter {
for
(
int
i
=
0
;
i
<
trt_dims_y
.
nbDims
;
i
++
)
{
trt_dims_y
.
d
[
i
]
=
dims_y
[
i
];
}
// this is the special case when dims_y includes batch dimension!
// we need remove batch dimension!
if
(
!
engine_
->
with_dynamic_shape
()
&&
trt_dims_y
.
nbDims
==
(
X
->
getDimensions
().
nbDims
+
1
))
{
trt_dims_y
.
nbDims
--
;
PADDLE_ENFORCE_EQ
(
trt_dims_y
.
d
[
0
],
1
,
platform
::
errors
::
InvalidArgument
(
"Elementwise type(%s) op's Y is a weight "
"including batch dimension. Please "
"check if the 0th dimension equals 1."
,
op_type_
));
for
(
int
i
=
0
;
i
<
trt_dims_y
.
nbDims
;
i
++
)
{
trt_dims_y
.
d
[
i
]
=
trt_dims_y
.
d
[
i
+
1
];
}
}
Y
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
trt_dims_y
,
y_weight
.
get
())
->
getOutput
(
0
);
}
else
{
...
...
paddle/fluid/inference/tensorrt/convert/slice_op.cc
浏览文件 @
56ddd7c2
...
...
@@ -166,6 +166,29 @@ class SliceOpConverter : public OpConverter {
}
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
input
,
trt_start_dims
,
trt_size_dims
,
trt_step_dims
);
nvinfer1
::
Dims
real_trt_size_dims
;
real_trt_size_dims
.
nbDims
=
0
;
if
(
decrease_axises
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
decrease_axises
.
size
();
i
++
)
{
decrease_axises
[
i
]
--
;
}
for
(
int
i
=
0
;
i
<
trt_size_dims
.
nbDims
;
i
++
)
{
if
(
decrease_axises
.
end
()
!=
std
::
find
(
decrease_axises
.
begin
(),
decrease_axises
.
end
(),
i
))
continue
;
real_trt_size_dims
.
d
[
real_trt_size_dims
.
nbDims
]
=
trt_size_dims
.
d
[
i
];
real_trt_size_dims
.
nbDims
++
;
}
if
(
real_trt_size_dims
.
nbDims
==
0
)
{
real_trt_size_dims
.
nbDims
=
1
;
real_trt_size_dims
.
d
[
0
]
=
1
;
}
auto
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
layer
->
getOutput
(
0
));
reshape_layer
->
setReshapeDimensions
(
real_trt_size_dims
);
layer
=
static_cast
<
nvinfer1
::
ILayer
*>
(
reshape_layer
);
}
#else
bool
with_fp16
=
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
56ddd7c2
...
...
@@ -1217,14 +1217,9 @@ bool OpTeller::Tell(const framework::ir::Node* node,
if
(
desc
.
HasAttr
(
"decrease_axis"
))
{
std
::
vector
<
int
>
decrease_axis
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"decrease_axis"
));
if
(
with_dynamic_shape
)
{
if
(
decrease_axis
.
size
()
>
1
)
{
return
false
;
}
}
else
{
if
(
decrease_axis
.
size
()
>
0
)
{
VLOG
(
3
)
<<
"Invalid slice decrease_axis. decrease_axis.size() > 0"
"is not supported in TensorRT"
;
if
(
!
with_dynamic_shape
)
{
if
(
decrease_axis
.
end
()
!=
std
::
find
(
decrease_axis
.
begin
(),
decrease_axis
.
end
(),
0
))
{
return
false
;
}
}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
浏览文件 @
56ddd7c2
...
...
@@ -21,6 +21,109 @@ from functools import partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
# This is the special test case with weight including batch dimension
# I don't want to mess up the code written by others, so I wrote a class specifically
class
TrtConvertElementwiseTest_one_input_special_case0
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_weight
():
return
np
.
random
.
randn
(
1
,
32
,
1
,
1
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
4
]:
for
shape
in
[[
batch
,
32
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
[
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
"Y"
:
[
"weight"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)),
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
# The input.dims[1] must be equal to the weight's length.
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
,
32
,
32
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
4
,
32
,
16
,
32
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertElementwiseTest_one_input
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_slice.py
浏览文件 @
56ddd7c2
...
...
@@ -111,13 +111,6 @@ class TrtConvertSliceTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
inputs
=
program_config
.
inputs
if
dynamic_shape
==
True
and
len
(
attrs
[
0
][
"decrease_axis"
])
==
0
:
return
1
,
2
if
dynamic_shape
==
True
and
len
(
attrs
[
0
][
"decrease_axis"
])
!=
1
:
return
0
,
3
if
dynamic_shape
==
False
and
len
(
attrs
[
0
][
"decrease_axis"
])
!=
0
:
return
0
,
3
if
not
dynamic_shape
:
for
x
in
attrs
[
0
][
"axes"
]:
if
x
==
0
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录