Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
531e7b6f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
531e7b6f
编写于
12月 03, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
gpu test ok
上级
c75b4538
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
64 addition
and
53 deletion
+64
-53
paddle/operators/spp_op.cc
paddle/operators/spp_op.cc
+8
-20
paddle/operators/spp_op.cu.cc
paddle/operators/spp_op.cu.cc
+22
-0
paddle/operators/spp_op.h
paddle/operators/spp_op.h
+31
-30
python/paddle/v2/fluid/tests/test_spp_op.py
python/paddle/v2/fluid/tests/test_spp_op.py
+3
-3
未找到文件。
paddle/operators/spp_op.cc
浏览文件 @
531e7b6f
...
@@ -29,28 +29,22 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -29,28 +29,22 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor) The output tensor of spp operator."
"(Tensor) The output tensor of spp operator."
"N * M."
"N * M."
"M = C * H * W"
);
"M = C * H * W"
);
AddAttr
<
int
>
(
"pyramid_height"
,
"
>= 1
"
);
AddAttr
<
int
>
(
"pyramid_height"
,
"
int
"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
"Input shape: $(N, C_{in}, H_{in}, W_{in})$
"Does spatial pyramid pooling on the input image by taking the max,
etc. within regions so that the result vector of different sized
images are of the same size
Input shape: $(N, C_{in}, H_{in}, W_{in})$
Output shape: $(H_{out}, W_{out})$
Output shape: $(H_{out}, W_{out})$
Where
Where
$$
$$
H_{out} =
(H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0]
\\
H_{out} =
N
\\
W_{out} = (
W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
W_{out} = (
(std::pow(4, pyramid_height) - 1) / (4 - 1)) * C_{in}
$$
$$
)DOC"
);
)DOC"
);
}
}
};
};
int
OutputSize
(
int
pyramid_level
,
int
input_size
)
{
int
bins
=
std
::
pow
(
2
,
pyramid_level
);
int
ksize
=
std
::
ceil
(
input_size
/
static_cast
<
double
>
(
bins
));
int
padding
=
(
ksize
*
bins
-
input_size
+
1
)
/
2
;
int
output_size
=
(
input_size
-
ksize
+
2
*
padding
)
/
ksize
+
1
;
// output_size = bins
return
output_size
;
}
class
SppOp
:
public
framework
::
OperatorWithKernel
{
class
SppOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
@@ -64,13 +58,7 @@ class SppOp : public framework::OperatorWithKernel {
...
@@ -64,13 +58,7 @@ class SppOp : public framework::OperatorWithKernel {
int
pyramid_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pyramid_height"
);
int
pyramid_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pyramid_height"
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
,
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
,
"Spping intput must be of 4-dimensional."
);
"Spping intput must be of 4-dimensional."
);
int
outlen
=
0
;
int
outlen
=
((
std
::
pow
(
4
,
pyramid_height
)
-
1
)
/
(
4
-
1
))
*
in_x_dims
[
1
];
for
(
int
p
=
0
;
p
<
pyramid_height
;
++
p
)
{
int
outh
=
OutputSize
(
p
,
in_x_dims
[
2
]);
int
outw
=
OutputSize
(
p
,
in_x_dims
[
3
]);
int
p_level_outlen
=
outh
*
outw
*
in_x_dims
[
1
];
outlen
+=
p_level_outlen
;
}
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
outlen
});
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
outlen
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
}
...
...
paddle/operators/spp_op.cu.cc
0 → 100644
浏览文件 @
531e7b6f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/spp_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
spp
,
ops
::
SppKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
SppKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
spp_grad
,
ops
::
SppGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
SppGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/spp_op.h
浏览文件 @
531e7b6f
...
@@ -42,34 +42,36 @@ class SppKernel : public framework::OpKernel<T> {
...
@@ -42,34 +42,36 @@ class SppKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
({
ksize_h
,
ksize_w
});
std
::
vector
<
int
>
strides
({
ksize_h
,
ksize_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
// pooling output shape
// pooling output shape
framework
::
Tensor
out_level
;
std
::
vector
<
int64_t
>
output_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
std
::
vector
<
int64_t
>
output_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
output_shape_vec
.
push_back
((
input_h
-
ksize_h
+
2
*
padding_h
)
/
ksize_h
+
output_shape_vec
.
push_back
((
input_h
-
ksize_h
+
2
*
padding_h
)
/
ksize_h
+
1
);
1
);
output_shape_vec
.
push_back
((
input_w
-
ksize_w
+
2
*
padding_w
)
/
ksize_w
+
output_shape_vec
.
push_back
((
input_w
-
ksize_w
+
2
*
padding_w
)
/
ksize_w
+
1
);
1
);
framework
::
DDim
output_shape
(
framework
::
make_ddim
(
output_shape_vec
));
framework
::
DDim
output_shape
(
framework
::
make_ddim
(
output_shape_vec
));
// flatten pooling output shape
int
output_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
std
::
vector
<
int64_t
>
output_flatten_shape_vec
(
{
in_x
->
dims
()[
0
],
output_flatten_w
});
framework
::
DDim
output_flatten_shape
(
framework
::
make_ddim
(
output_flatten_shape_vec
));
framework
::
Tensor
out_level
;
framework
::
Tensor
out_flatten_level
;
out_level
.
mutable_data
<
T
>
(
output_shape
,
context
.
GetPlace
());
out_level
.
mutable_data
<
T
>
(
output_shape
,
context
.
GetPlace
());
// pooling
// pooling
math
::
Pool2dFunctor
<
Place
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
math
::
Pool2dFunctor
<
Place
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
math
::
MaxPool
<
T
>
max_process
;
math
::
MaxPool
<
T
>
max_process
;
pool_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
pool_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
max_process
,
&
out_level
);
max_process
,
&
out_level
);
// flatten pooling output shape
framework
::
Tensor
out_flatten_level
;
int
output_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
std
::
vector
<
int64_t
>
output_flatten_shape_vec
(
{
in_x
->
dims
()[
0
],
output_flatten_w
});
framework
::
DDim
output_flatten_shape
(
framework
::
make_ddim
(
output_flatten_shape_vec
));
out_flatten_level
.
ShareDataWith
(
out_level
);
out_flatten_level
.
ShareDataWith
(
out_level
);
out_flatten_level
.
Resize
(
output_flatten_shape
);
out_flatten_level
.
Resize
(
output_flatten_shape
);
auto
in_stride
=
framework
::
stride
(
out_flatten_level
.
dims
());
// concat
const
T
*
src_data
=
out_flatten_level
.
data
<
T
>
();
auto
out_flatten_level_stride
=
StridedMemcpy
<
T
>
(
context
.
device_context
(),
src_data
,
in_stride
,
framework
::
stride
(
out_flatten_level
.
dims
());
out_flatten_level
.
dims
(),
out_stride
,
StridedMemcpy
<
T
>
(
context
.
device_context
(),
out_flatten_level
.
data
<
T
>
(),
out
->
data
<
T
>
()
+
output_offset
);
out_flatten_level_stride
,
out_flatten_level
.
dims
(),
output_offset
+=
out_flatten_level
.
dims
()[
1
]
*
in_stride
[
1
];
out_stride
,
out
->
data
<
T
>
()
+
output_offset
);
output_offset
+=
out_flatten_level
.
dims
()[
1
]
*
out_flatten_level_stride
[
1
];
}
}
}
}
};
};
...
@@ -83,12 +85,11 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -83,12 +85,11 @@ class SppGradKernel : public framework::OpKernel<T> {
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
framework
::
Tensor
*
in_x_grad
=
framework
::
Tensor
*
in_x_grad
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
pyramid_height
=
context
.
template
Attr
<
int
>(
"pyramid_height"
);
auto
&
device_ctx
=
context
.
device_context
();
auto
&
device_ctx
=
context
.
device_context
();
math
::
SetConstant
<
Place
,
T
>
zero
;
math
::
SetConstant
<
Place
,
T
>
zero
;
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
zero
(
device_ctx
,
in_x_grad
,
static_cast
<
T
>
(
0
));
zero
(
device_ctx
,
in_x_grad
,
static_cast
<
T
>
(
0
));
int
pyramid_height
=
context
.
template
Attr
<
int
>(
"pyramid_height"
);
auto
outgrad_stride
=
framework
::
stride
(
out_grad
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
int
input_h
=
in_x
->
dims
()[
2
];
int
input_h
=
in_x
->
dims
()[
2
];
int
input_w
=
in_x
->
dims
()[
3
];
int
input_w
=
in_x
->
dims
()[
3
];
...
@@ -102,26 +103,17 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -102,26 +103,17 @@ class SppGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
ksize
({
ksize_h
,
ksize_w
});
std
::
vector
<
int
>
ksize
({
ksize_h
,
ksize_w
});
std
::
vector
<
int
>
strides
({
ksize_h
,
ksize_w
});
std
::
vector
<
int
>
strides
({
ksize_h
,
ksize_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
// split outgrad and get flatten
// split out and outgrad ... to flatten
std
::
vector
<
int64_t
>
out_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
framework
::
Tensor
out_flatten_level
;
out_shape_vec
.
push_back
((
input_h
-
ksize_h
+
2
*
padding_h
)
/
ksize_h
+
framework
::
Tensor
outgrad_flatten_level
;
1
);
out_shape_vec
.
push_back
((
input_w
-
ksize_w
+
2
*
padding_w
)
/
ksize_w
+
1
);
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
int
out_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
int
out_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
std
::
vector
<
int64_t
>
out_flatten_shape_vec
(
std
::
vector
<
int64_t
>
out_flatten_shape_vec
(
{
in_x
->
dims
()[
0
],
out_flatten_w
});
{
in_x
->
dims
()[
0
],
out_flatten_w
});
framework
::
DDim
out_flatten_shape
(
framework
::
DDim
out_flatten_shape
(
framework
::
make_ddim
(
out_flatten_shape_vec
));
framework
::
make_ddim
(
out_flatten_shape_vec
));
framework
::
Tensor
out_level
;
framework
::
Tensor
outgrad_level
;
framework
::
Tensor
out_flatten_level
;
framework
::
Tensor
outgrad_flatten_level
;
out_flatten_level
.
mutable_data
<
T
>
(
out_flatten_shape
,
context
.
GetPlace
());
out_flatten_level
.
mutable_data
<
T
>
(
out_flatten_shape
,
context
.
GetPlace
());
outgrad_flatten_level
.
mutable_data
<
T
>
(
out_flatten_shape
,
outgrad_flatten_level
.
mutable_data
<
T
>
(
out_flatten_shape
,
context
.
GetPlace
());
context
.
GetPlace
());
auto
flatten_stride
=
framework
::
stride
(
out_flatten_level
.
dims
());
auto
flatten_stride
=
framework
::
stride
(
out_flatten_level
.
dims
());
// memcpy
// memcpy
StridedMemcpy
<
T
>
(
context
.
device_context
(),
out
->
data
<
T
>
()
+
out_offset
,
StridedMemcpy
<
T
>
(
context
.
device_context
(),
out
->
data
<
T
>
()
+
out_offset
,
...
@@ -129,15 +121,24 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -129,15 +121,24 @@ class SppGradKernel : public framework::OpKernel<T> {
out_flatten_level
.
data
<
T
>
());
out_flatten_level
.
data
<
T
>
());
StridedMemcpy
<
T
>
(
context
.
device_context
(),
StridedMemcpy
<
T
>
(
context
.
device_context
(),
out_grad
->
data
<
T
>
()
+
out_offset
,
out
grad
_stride
,
out_grad
->
data
<
T
>
()
+
out_offset
,
out_stride
,
outgrad_flatten_level
.
dims
(),
flatten_stride
,
outgrad_flatten_level
.
dims
(),
flatten_stride
,
outgrad_flatten_level
.
data
<
T
>
());
outgrad_flatten_level
.
data
<
T
>
());
out_offset
+=
out_flatten_level
.
dims
()[
1
]
*
out_stride
[
1
];
out_offset
+=
out_flatten_level
.
dims
()[
1
]
*
out_stride
[
1
];
// flatten backward
// flatten backward to nchw
framework
::
Tensor
out_level
;
framework
::
Tensor
outgrad_level
;
std
::
vector
<
int64_t
>
out_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
out_shape_vec
.
push_back
((
input_h
-
ksize_h
+
2
*
padding_h
)
/
ksize_h
+
1
);
out_shape_vec
.
push_back
((
input_w
-
ksize_w
+
2
*
padding_w
)
/
ksize_w
+
1
);
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
out_level
.
ShareDataWith
(
out_flatten_level
);
out_level
.
ShareDataWith
(
out_flatten_level
);
out_level
.
Resize
(
out_shape
);
out_level
.
Resize
(
out_shape
);
outgrad_level
.
ShareDataWith
(
outgrad_flatten_level
);
outgrad_level
.
ShareDataWith
(
outgrad_flatten_level
);
outgrad_level
.
Resize
(
out_shape
);
outgrad_level
.
Resize
(
out_shape
);
// pooling backward
math
::
MaxPool2dGradFunctor
<
Place
,
T
>
pool2d_backward
;
math
::
MaxPool2dGradFunctor
<
Place
,
T
>
pool2d_backward
;
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*&
out_level
,
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*&
out_level
,
*&
outgrad_level
,
ksize
,
strides
,
paddings
,
in_x_grad
);
*&
outgrad_level
,
ksize
,
strides
,
paddings
,
in_x_grad
);
...
...
python/paddle/v2/fluid/tests/test_spp_op.py
浏览文件 @
531e7b6f
...
@@ -37,11 +37,11 @@ class TestSppOp(OpTest):
...
@@ -37,11 +37,11 @@ class TestSppOp(OpTest):
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.05
)
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
shape
=
[
1
,
1
,
2
,
2
]
self
.
shape
=
[
3
,
2
,
4
,
4
]
self
.
pyramid_height
=
2
self
.
pyramid_height
=
3
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录