Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
50ad9046
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
50ad9046
编写于
5月 09, 2019
作者:
X
xiaoting
提交者:
Cheerego
5月 09, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add import, test=develop (#17229)
上级
4292bd86
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
65 addition
and
20 deletion
+65
-20
paddle/fluid/API.spec
paddle/fluid/API.spec
+4
-4
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+6
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+2
-1
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+53
-15
未找到文件。
paddle/fluid/API.spec
浏览文件 @
50ad9046
...
@@ -351,7 +351,7 @@ paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=Non
...
@@ -351,7 +351,7 @@ paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=Non
paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '032d0f4b7d8f6235ee5d91e473344f0e'))
paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '032d0f4b7d8f6235ee5d91e473344f0e'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0e5ac2507723a0b5adec473f9556799b'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0e5ac2507723a0b5adec473f9556799b'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', 'eb62b1ff7cc981f3483a62321a491f2e'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', 'eb62b1ff7cc981f3483a62321a491f2e'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
5566169a5ab993d177792c023c7fb34
0'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
f332fb8c5bb581bd1a6b5be450a9999
0'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '04384378ff00a42ade8fabd52e27cbc5'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '04384378ff00a42ade8fabd52e27cbc5'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d'))
...
@@ -361,9 +361,9 @@ paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_threshold
...
@@ -361,9 +361,9 @@ paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_threshold
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '98a5050bee8522fcea81aa795adaba51'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '98a5050bee8522fcea81aa795adaba51'))
paddle.fluid.layers.natural_exp_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '676a7bc2a218691db50bca233903d21e'))
paddle.fluid.layers.natural_exp_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '676a7bc2a218691db50bca233903d21e'))
paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', 'd07e767d59c4a5e6c930f3e6756d3f82'))
paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', 'd07e767d59c4a5e6c930f3e6756d3f82'))
paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', '
882634f420f626642f0874481263da40
'))
paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', '
a343254c36c2e89512cd8cd8a1960ead
'))
paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', '
c717d9d1d78a53c809d01b8bc56f3cae
'))
paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', '
d9f654117542c6b702963dda107a247f
'))
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', '
d9a95746353fd574be36dc28d8726c28
'))
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', '
f96805b1a64f9a12f4627497e5fcb920
'))
paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', 'f8b2727bccf0f368c997d7cf05847e49'))
paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', 'f8b2727bccf0f368c997d7cf05847e49'))
paddle.fluid.layers.linear_lr_warmup (ArgSpec(args=['learning_rate', 'warmup_steps', 'start_lr', 'end_lr'], varargs=None, keywords=None, defaults=None), ('document', '2ef3f5ca5cd71ea4217c418e5a7a0565'))
paddle.fluid.layers.linear_lr_warmup (ArgSpec(args=['learning_rate', 'warmup_steps', 'start_lr', 'end_lr'], varargs=None, keywords=None, defaults=None), ('document', '2ef3f5ca5cd71ea4217c418e5a7a0565'))
paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
python/paddle/fluid/initializer.py
浏览文件 @
50ad9046
...
@@ -205,6 +205,8 @@ class UniformInitializer(Initializer):
...
@@ -205,6 +205,8 @@ class UniformInitializer(Initializer):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
"""
"""
...
@@ -366,6 +368,8 @@ class TruncatedNormalInitializer(Initializer):
...
@@ -366,6 +368,8 @@ class TruncatedNormalInitializer(Initializer):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
"""
"""
...
@@ -471,6 +475,8 @@ class XavierInitializer(Initializer):
...
@@ -471,6 +475,8 @@ class XavierInitializer(Initializer):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
queries = fluid.layers.data(name='x', shape=[1], dtype='float32')
fc = fluid.layers.fc(
fc = fluid.layers.fc(
input=queries, size=10,
input=queries, size=10,
param_attr=fluid.initializer.Xavier(uniform=False))
param_attr=fluid.initializer.Xavier(uniform=False))
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
50ad9046
...
@@ -666,9 +666,10 @@ def yolo_box(x,
...
@@ -666,9 +666,10 @@ def yolo_box(x,
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
anchors = [10, 13, 16, 30, 33, 23]
anchors = [10, 13, 16, 30, 33, 23]
loss = fluid.layers.yolo_box(x=x, class_num=80, anchors=anchors,
loss = fluid.layers.yolo_box(x=x,
img_size=608,
class_num=80, anchors=anchors,
conf_thresh=0.01, downsample_ratio=32)
conf_thresh=0.01, downsample_ratio=32)
"""
"""
helper
=
LayerHelper
(
'yolo_box'
,
**
locals
())
helper
=
LayerHelper
(
'yolo_box'
,
**
locals
())
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
50ad9046
...
@@ -52,10 +52,17 @@ def noam_decay(d_model, warmup_steps):
...
@@ -52,10 +52,17 @@ def noam_decay(d_model, warmup_steps):
"""
"""
Noam decay method. The numpy implementation of noam decay as follows.
Noam decay method. The numpy implementation of noam decay as follows.
>>> import numpy as np
.. code-block:: python
>>> lr_value = np.power(d_model, -0.5) * np.min([
>>> np.power(current_steps, -0.5),
import numpy as np
>>> np.power(warmup_steps, -1.5) * current_steps])
# set hyper parameters
d_model = 2
current_steps = 20
warmup_steps = 200
# compute
lr_value = np.power(d_model, -0.5) * np.min([
np.power(current_steps, -0.5),
np.power(warmup_steps, -1.5) * current_steps])
Please reference `attention is all you need
Please reference `attention is all you need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
<https://arxiv.org/pdf/1706.03762.pdf>`_.
...
@@ -67,6 +74,15 @@ def noam_decay(d_model, warmup_steps):
...
@@ -67,6 +74,15 @@ def noam_decay(d_model, warmup_steps):
Returns:
Returns:
The decayed learning rate.
The decayed learning rate.
Examples:
.. code-block:: python
import padde.fluid as fluid
warmup_steps = 100
learning_rate = 0.01
lr = fluid.layers.learning_rate_scheduler.noam_decay(
1/(warmup_steps *(learning_rate ** 2)),
warmup_steps)
"""
"""
with
default_main_program
().
_lr_schedule_guard
():
with
default_main_program
().
_lr_schedule_guard
():
if
imperative_base
.
enabled
():
if
imperative_base
.
enabled
():
...
@@ -228,7 +244,7 @@ def polynomial_decay(learning_rate,
...
@@ -228,7 +244,7 @@ def polynomial_decay(learning_rate,
"""
"""
Applies polynomial decay to the initial learning rate.
Applies polynomial decay to the initial learning rate.
.. code-block::
python
.. code-block::
text
if cycle:
if cycle:
decay_steps = decay_steps * ceil(global_step / decay_steps)
decay_steps = decay_steps * ceil(global_step / decay_steps)
...
@@ -247,6 +263,17 @@ def polynomial_decay(learning_rate,
...
@@ -247,6 +263,17 @@ def polynomial_decay(learning_rate,
Returns:
Returns:
Variable: The decayed learning rate
Variable: The decayed learning rate
Examples:
.. code-block:: python
import paddle.fluid as fluid
start_lr = 0.01
total_step = 5000
end_lr = 0
lr = fluid.layers.polynomial_decay(
start_lr, total_step, end_lr, power=1)
"""
"""
with
default_main_program
().
_lr_schedule_guard
():
with
default_main_program
().
_lr_schedule_guard
():
if
imperative_base
.
enabled
():
if
imperative_base
.
enabled
():
...
@@ -281,18 +308,18 @@ def polynomial_decay(learning_rate,
...
@@ -281,18 +308,18 @@ def polynomial_decay(learning_rate,
def
piecewise_decay
(
boundaries
,
values
):
def
piecewise_decay
(
boundaries
,
values
):
"""Applies piecewise decay to the initial learning rate.
"""Applies piecewise decay to the initial learning rate.
The algorithm can be described as the code below.
The algorithm can be described as the code below.
.. code-block:: python
.. code-block:: text
boundaries = [10000, 20000]
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
values = [1.0, 0.5, 0.1]
if step < 10000:
if step < 10000:
learning_rate = 1.0
learning_rate = 1.0
elif 10000 <= step < 20000:
elif 10000 <= step < 20000:
learning_rate = 0.5
learning_rate = 0.5
else:
else:
learning_rate = 0.1
learning_rate = 0.1
Args:
Args:
boundaries: A list of steps numbers.
boundaries: A list of steps numbers.
values: A list of learning rate values that will be picked during
values: A list of learning rate values that will be picked during
...
@@ -301,6 +328,17 @@ def piecewise_decay(boundaries, values):
...
@@ -301,6 +328,17 @@ def piecewise_decay(boundaries, values):
Returns:
Returns:
The decayed learning rate.
The decayed learning rate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
optimizer = fluid.optimizer.Momentum(
momentum=0.9,
learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values),
regularization=fluid.regularizer.L2Decay(1e-4))
"""
"""
with
default_main_program
().
_lr_schedule_guard
():
with
default_main_program
().
_lr_schedule_guard
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录