提交 4f0869be 编写于 作者: T tensor-tang

add some necessary params for reset functions

上级 f3bb7b99
...@@ -78,46 +78,52 @@ void MKLDNNFcLayer::convertWeightsToPaddle() { ...@@ -78,46 +78,52 @@ void MKLDNNFcLayer::convertWeightsToPaddle() {
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
} }
void MKLDNNFcLayer::reshape() { void MKLDNNFcLayer::reshape(
reshapeInput(); int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
reshapeInput(bs, ih, iw);
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize()); CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
ic_ = iLayerSize_ / (ih_ * iw_); ic = iLayerSize_ / (ih * iw);
CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible"; CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible";
CHECK_EQ(size_t(oc_), getSize()); CHECK_EQ(size_t(oc), getSize());
reshapeOutput(oh_, ow_); reshapeOutput(oh, ow);
resizeOutput(bs_, oc_); resizeOutput(bs, oc);
printSizeInfo(); printSizeInfo();
} }
void MKLDNNFcLayer::resetFwd() { void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
bool hasBias = biases_ && biases_->getW(); bool hasBias = biases_ && biases_->getW();
const MatrixPtr& wgt = weight_->getW(); const MatrixPtr& wgtVal = weight_->getW();
const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr; const MatrixPtr& biasVal = hasBias ? biases_->getW() : nullptr;
const MatrixPtr& out = output_.value; const MatrixPtr& outVal = output_.value;
if (inputIsOnlyMKLDNN()) { if (inputIsOnlyMKLDNN()) {
const MatrixPtr& in = getInputValue(0); const MatrixPtr& inVal = getInputValue(0);
inVal_ = std::dynamic_pointer_cast<MKLDNNMatrix>(in); in = std::dynamic_pointer_cast<MKLDNNMatrix>(inVal);
CHECK(inVal_) << "Input should be MKLDNNMatrix"; CHECK(in) << "Input should be MKLDNNMatrix";
} else { } else {
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
const MatrixPtr& in = getInputValue(0, CPU_DEVICE); const MatrixPtr& inVal = getInputValue(0, CPU_DEVICE);
inVal_ = MKLDNNMatrix::create( in = MKLDNNMatrix::create(
in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_); inVal, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
} }
inVal_->downSpatial(); in->downSpatial();
wgtVal_ = MKLDNNMatrix::create( wgt = MKLDNNMatrix::create(
wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_); wgtVal, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
wgtVal_->downSpatial(); wgt->downSpatial();
biasVal_ = bias = hasBias ? MKLDNNMatrix::create(biasVal, {oc_}, format::x, engine_)
hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr; : nullptr;
outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_); out = MKLDNNMatrix::create(outVal, {bs_, oc_}, format::nc, engine_);
// change original output value to mkldnn output value // change original output value to mkldnn output value
output_.value = std::dynamic_pointer_cast<Matrix>(outVal_); output_.value = std::dynamic_pointer_cast<Matrix>(out);
if (!outputIsOnlyMKLDNN()) { if (!outputIsOnlyMKLDNN()) {
// fc cpu output value do not need create convert // fc cpu output value do not need create convert
// just share point // just share point
...@@ -127,27 +133,31 @@ void MKLDNNFcLayer::resetFwd() { ...@@ -127,27 +133,31 @@ void MKLDNNFcLayer::resetFwd() {
// create forward handle // create forward handle
prop_kind pk = prop_kind::forward; prop_kind pk = prop_kind::forward;
fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk, fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk,
inVal_->getMemoryDesc(), in->getMemoryDesc(),
wgtVal_->getMemoryDesc(), wgt->getMemoryDesc(),
biasVal_->getMemoryDesc(), bias->getMemoryDesc(),
outVal_->getMemoryDesc()) out->getMemoryDesc())
: fc_fwd::desc(pk, : fc_fwd::desc(pk,
inVal_->getMemoryDesc(), in->getMemoryDesc(),
wgtVal_->getMemoryDesc(), wgt->getMemoryDesc(),
outVal_->getMemoryDesc()); out->getMemoryDesc());
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
if (hasBias) { if (hasBias) {
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_)); fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *bias, *out));
} else { } else {
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_)); fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *out));
} }
printValueFormatFlow(); printValueFormatFlow();
pipelineFwd_.clear(); pipeline.push_back(*fwd_);
pipelineFwd_.push_back(*fwd_);
} }
void MKLDNNFcLayer::resetBwd() { void MKLDNNFcLayer::resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (!needResetBwd_) { if (!needResetBwd_) {
return; return;
} }
...@@ -156,8 +166,8 @@ void MKLDNNFcLayer::resetBwd() { ...@@ -156,8 +166,8 @@ void MKLDNNFcLayer::resetBwd() {
/// backward weight /// backward weight
CHECK(inVal_) << "Should have input value"; CHECK(inVal_) << "Should have input value";
const MatrixPtr& wgt = weight_->getWGrad(); const MatrixPtr& wgtGrad = weight_->getWGrad();
const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr; const MatrixPtr& biasGrad = hasBias ? biases_->getWGrad() : nullptr;
// TODO(TJ): merge outgrad // TODO(TJ): merge outgrad
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE; int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
...@@ -168,59 +178,56 @@ void MKLDNNFcLayer::resetBwd() { ...@@ -168,59 +178,56 @@ void MKLDNNFcLayer::resetBwd() {
// for CPU device: // for CPU device:
// fc do not need to convert from cpu device since output is always nc format // fc do not need to convert from cpu device since output is always nc format
// only need create from cpu device // only need create from cpu device
const MatrixPtr& out = getOutput(device).grad; const MatrixPtr& outGrad = getOutput(device).grad;
outGrad_ = MKLDNNMatrix::create(out, outVal_->getPrimitiveDesc()); out = MKLDNNMatrix::create(outGrad, outVal_->getPrimitiveDesc());
wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPrimitiveDesc()); wgt = MKLDNNMatrix::create(wgtGrad, wgtVal_->getPrimitiveDesc());
biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPrimitiveDesc()) bias = hasBias ? MKLDNNMatrix::create(biasGrad, biasVal_->getPrimitiveDesc())
: nullptr; : nullptr;
// create memory primitive desc // create memory primitive desc
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
inVal_->getMemoryDesc(), inVal_->getMemoryDesc(),
wgtGrad_->getMemoryDesc(), wgt->getMemoryDesc(),
outGrad_->getMemoryDesc()); out->getMemoryDesc());
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
fc_bwdWgt::desc bwdWgtDesc = hasBias fc_bwdWgt::desc bwdWgtDesc = hasBias
? fc_bwdWgt::desc(inVal_->getMemoryDesc(), ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
wgtGrad_->getMemoryDesc(), wgt->getMemoryDesc(),
biasGrad_->getMemoryDesc(), bias->getMemoryDesc(),
outGrad_->getMemoryDesc()) out->getMemoryDesc())
: fc_bwdWgt::desc(inVal_->getMemoryDesc(), : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
wgtGrad_->getMemoryDesc(), wgt->getMemoryDesc(),
outGrad_->getMemoryDesc()); out->getMemoryDesc());
fc_bwdWgt::primitive_desc bwdWgtPD = fc_bwdWgt::primitive_desc bwdWgtPD =
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD); fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
if (hasBias) { if (hasBias) {
bwdWgt_.reset( bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias));
new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
} else { } else {
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_)); bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt));
} }
pipelineBwd_.clear(); pipeline.push_back(*bwdWgt_);
pipelineBwd_.push_back(*bwdWgt_);
/// backward data /// backward data
const MatrixPtr& in = inputLayers_[0]->getOutput().grad; const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (in == nullptr) { if (inGrad == nullptr) {
return; return;
} }
if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) { if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) {
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
} else { } else {
inGrad_ = MKLDNNMatrix::create(in, inVal_->getPrimitiveDesc()); in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
} }
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(inVal_->getMemoryDesc(), fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
wgtGrad_->getMemoryDesc(), inVal_->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc());
outGrad_->getMemoryDesc());
fc_bwdData::primitive_desc bwdDataPD = fc_bwdData::primitive_desc bwdDataPD =
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD); fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
CHECK(wgtVal_) << "Should have weight memory"; CHECK(wgtVal_) << "Should have weight memory";
bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_)); bwdData_.reset(new fc_bwdData(bwdDataPD, *out, *wgtVal_, *in));
printGradFormatFlow(); printGradFormatFlow();
pipelineBwd_.push_back(*bwdData_); pipeline.push_back(*bwdData_);
} }
void MKLDNNFcLayer::updateInputData() { void MKLDNNFcLayer::updateInputData() {
......
...@@ -45,11 +45,20 @@ public: ...@@ -45,11 +45,20 @@ public:
bool init(const LayerMap& layerMap, bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override; const ParameterMap& parameterMap) override;
void reshape() override; void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
void resetFwd() override;
void resetFwd(std::vector<mkldnn::primitive>& pipeline,
void resetBwd() override; MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void updateInputData() override; void updateInputData() override;
......
...@@ -111,13 +111,14 @@ public: ...@@ -111,13 +111,14 @@ public:
{ {
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
copySeqInfoToOutputs();
CHECK(!inputLayers_.empty()); CHECK(!inputLayers_.empty());
copySeqInfoToOutputs();
size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt(); size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt();
if (inputElemenCnt_ != elemenCnt) { if (inputElemenCnt_ != elemenCnt) {
// reset when input total sizes changed, not only the batchsize
inputElemenCnt_ = elemenCnt; inputElemenCnt_ = elemenCnt;
reshape(); reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
resetFwd(); resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
convertWeightsFromPaddle(); convertWeightsFromPaddle();
needResetBwd_ = true; needResetBwd_ = true;
} }
...@@ -144,7 +145,7 @@ public: ...@@ -144,7 +145,7 @@ public:
{ {
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
if (needResetBwd_) { if (needResetBwd_) {
resetBwd(); resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
needResetBwd_ = false; needResetBwd_ = false;
} }
...@@ -160,20 +161,30 @@ public: ...@@ -160,20 +161,30 @@ public:
/** /**
* reshape the input image sizes * reshape the input image sizes
* and reset output image and buffer size * and reset output image and buffer size
* output channel can not be changed
*/ */
virtual void reshape() = 0; virtual void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0;
/** /**
* reset the mkldnn forward primitve and memory * reset the mkldnn forward primitve and memory
* only would be called when input size changes * only would be called when input size changes
*/ */
virtual void resetFwd() = 0; virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) = 0;
/** /**
* reset the mkldnn backward primitve and memory for mkldnn fc * reset the mkldnn backward primitve and memory for mkldnn fc
* only would be called when needed * only would be called when needed
*/ */
virtual void resetBwd() = 0; virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) = 0;
/** /**
* Update input value data when input layer is "data" type. * Update input value data when input layer is "data" type.
...@@ -207,16 +218,16 @@ protected: ...@@ -207,16 +218,16 @@ protected:
/** /**
* reshape the input image sizes and input batchsize * reshape the input image sizes and input batchsize
*/ */
virtual void reshapeInput() { virtual void reshapeInput(int& batchsize, int& height, int& width) {
const Argument& input = inputLayers_[0]->getOutput(); const Argument& input = inputLayers_[0]->getOutput();
bs_ = input.getBatchSize(); batchsize = input.getBatchSize();
int height = input.getFrameHeight(); int h = input.getFrameHeight();
int width = input.getFrameWidth(); int w = input.getFrameWidth();
if (height != 0) { if (h != 0) {
ih_ = height; height = h;
} }
if (width != 0) { if (w != 0) {
iw_ = width; width = w;
} }
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册