Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
4f06cd17
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4f06cd17
编写于
5月 06, 2021
作者:
T
tianshuo78520a
提交者:
GitHub
5月 06, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Pick revert data generator (#32700)
* revert data_generator * add setup.py
上级
f3436af1
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
344 addition
and
0 deletion
+344
-0
python/paddle/fluid/incubate/data_generator/__init__.py
python/paddle/fluid/incubate/data_generator/__init__.py
+343
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
python/paddle/fluid/incubate/data_generator/__init__.py
0 → 100644
浏览文件 @
4f06cd17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
__all__
=
[
'MultiSlotDataGenerator'
,
'MultiSlotStringDataGenerator'
]
class
DataGenerator
(
object
):
"""
DataGenerator is a general Base class for user to inherit
A user who wants to define his/her own python processing logic
with paddle.fluid.dataset should inherit this class.
"""
def
__init__
(
self
):
self
.
_proto_info
=
None
self
.
batch_size_
=
32
def
_set_line_limit
(
self
,
line_limit
):
if
not
isinstance
(
line_limit
,
int
):
raise
ValueError
(
"line_limit%s must be in int type"
%
type
(
line_limit
))
if
line_limit
<
1
:
raise
ValueError
(
"line_limit can not less than 1"
)
self
.
_line_limit
=
line_limit
def
set_batch
(
self
,
batch_size
):
'''
Set batch size of current DataGenerator
This is necessary only if a user wants to define generator_batch
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
int_words = [int(x) for x in line.split()]
yield ("words", int_words)
return local_iter
def generate_batch(self, samples):
def local_iter():
for s in samples:
yield ("words", s[1].extend([s[1][0]]))
mydata = MyData()
mydata.set_batch(128)
'''
self
.
batch_size_
=
batch_size
def
run_from_memory
(
self
):
'''
This function generator data from memory, it is usually used for
debug and benchmarking
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
yield ("words", [1, 2, 3, 4])
return local_iter
mydata = MyData()
mydata.run_from_memory()
'''
batch_samples
=
[]
line_iter
=
self
.
generate_sample
(
None
)
for
user_parsed_line
in
line_iter
():
if
user_parsed_line
==
None
:
continue
batch_samples
.
append
(
user_parsed_line
)
if
len
(
batch_samples
)
==
self
.
batch_size_
:
batch_iter
=
self
.
generate_batch
(
batch_samples
)
for
sample
in
batch_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
sample
))
batch_samples
=
[]
if
len
(
batch_samples
)
>
0
:
batch_iter
=
self
.
generate_batch
(
batch_samples
)
for
sample
in
batch_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
sample
))
def
run_from_stdin
(
self
):
'''
This function reads the data row from stdin, parses it with the
process function, and further parses the return value of the
process function with the _gen_str function. The parsed data will
be wrote to stdout and the corresponding protofile will be
generated.
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
int_words = [int(x) for x in line.split()]
yield ("words", [int_words])
return local_iter
mydata = MyData()
mydata.run_from_stdin()
'''
batch_samples
=
[]
for
line
in
sys
.
stdin
:
line_iter
=
self
.
generate_sample
(
line
)
for
user_parsed_line
in
line_iter
():
if
user_parsed_line
==
None
:
continue
batch_samples
.
append
(
user_parsed_line
)
if
len
(
batch_samples
)
==
self
.
batch_size_
:
batch_iter
=
self
.
generate_batch
(
batch_samples
)
for
sample
in
batch_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
sample
))
batch_samples
=
[]
if
len
(
batch_samples
)
>
0
:
batch_iter
=
self
.
generate_batch
(
batch_samples
)
for
sample
in
batch_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
sample
))
def
_gen_str
(
self
,
line
):
'''
Further processing the output of the process() function rewritten by
user, outputting data that can be directly read by the datafeed,and
updating proto_info information.
Args:
line(str): the output of the process() function rewritten by user.
Returns:
Return a string data that can be read directly by the datafeed.
'''
raise
NotImplementedError
(
"pls use MultiSlotDataGenerator or PairWiseDataGenerator"
)
def
generate_sample
(
self
,
line
):
'''
This function needs to be overridden by the user to process the
original data row into a list or tuple.
Args:
line(str): the original data row
Returns:
Returns the data processed by the user.
The data format is list or tuple:
[(name, [feasign, ...]), ...]
or ((name, [feasign, ...]), ...)
For example:
[("words", [1926, 08, 17]), ("label", [1])]
or (("words", [1926, 08, 17]), ("label", [1]))
Note:
The type of feasigns must be in int or float. Once the float
element appears in the feasign, the type of that slot will be
processed into a float.
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
int_words = [int(x) for x in line.split()]
yield ("words", [int_words])
return local_iter
'''
raise
NotImplementedError
(
"Please rewrite this function to return a list or tuple: "
+
"[(name, [feasign, ...]), ...] or ((name, [feasign, ...]), ...)"
)
def
generate_batch
(
self
,
samples
):
'''
This function needs to be overridden by the user to process the
generated samples from generate_sample(self, str) function
It is usually used as batch processing when a user wants to
do preprocessing on a batch of samples, e.g. padding according to
the max length of a sample in the batch
Args:
samples(list tuple): generated sample from generate_sample
Returns:
a python generator, the same format as return value of generate_sample
Example:
.. code-block:: python
import paddle.fluid.incubate.data_generator as dg
class MyData(dg.DataGenerator):
def generate_sample(self, line):
def local_iter():
int_words = [int(x) for x in line.split()]
yield ("words", int_words)
return local_iter
def generate_batch(self, samples):
def local_iter():
for s in samples:
yield ("words", s[1].extend([s[1][0]]))
mydata = MyData()
mydata.set_batch(128)
'''
def
local_iter
():
for
sample
in
samples
:
yield
sample
return
local_iter
# TODO: guru4elephant
# add more generalized DataGenerator that can adapt user-defined slot
# for example, [(name, float_list), (name, str_list), (name, int_list)]
class
MultiSlotStringDataGenerator
(
DataGenerator
):
def
_gen_str
(
self
,
line
):
'''
Further processing the output of the process() function rewritten by
user, outputting data that can be directly read by the MultiSlotDataFeed,
and updating proto_info information.
The input line will be in this format:
>>> [(name, [str(feasign), ...]), ...]
>>> or ((name, [str(feasign), ...]), ...)
The output will be in this format:
>>> [ids_num id1 id2 ...] ...
For example, if the input is like this:
>>> [("words", ["1926", "08", "17"]), ("label", ["1"])]
>>> or (("words", ["1926", "08", "17"]), ("label", ["1"]))
the output will be:
>>> 3 1234 2345 3456 1 1
Args:
line(str): the output of the process() function rewritten by user.
Returns:
Return a string data that can be read directly by the MultiSlotDataFeed.
'''
if
not
isinstance
(
line
,
list
)
and
not
isinstance
(
line
,
tuple
):
raise
ValueError
(
"the output of process() must be in list or tuple type"
"Examples: [('words', ['1926', '08', '17']), ('label', ['1'])]"
)
output
=
""
for
index
,
item
in
enumerate
(
line
):
name
,
elements
=
item
if
output
:
output
+=
" "
out_str
=
[]
out_str
.
append
(
str
(
len
(
elements
)))
out_str
.
extend
(
elements
)
output
+=
" "
.
join
(
out_str
)
return
output
+
"
\n
"
class
MultiSlotDataGenerator
(
DataGenerator
):
def
_gen_str
(
self
,
line
):
'''
Further processing the output of the process() function rewritten by
user, outputting data that can be directly read by the MultiSlotDataFeed,
and updating proto_info information.
The input line will be in this format:
>>> [(name, [feasign, ...]), ...]
>>> or ((name, [feasign, ...]), ...)
The output will be in this format:
>>> [ids_num id1 id2 ...] ...
The proto_info will be in this format:
>>> [(name, type), ...]
For example, if the input is like this:
>>> [("words", [1926, 08, 17]), ("label", [1])]
>>> or (("words", [1926, 08, 17]), ("label", [1]))
the output will be:
>>> 3 1234 2345 3456 1 1
the proto_info will be:
>>> [("words", "uint64"), ("label", "uint64")]
Args:
line(str): the output of the process() function rewritten by user.
Returns:
Return a string data that can be read directly by the MultiSlotDataFeed.
'''
if
not
isinstance
(
line
,
list
)
and
not
isinstance
(
line
,
tuple
):
raise
ValueError
(
"the output of process() must be in list or tuple type"
"Example: [('words', [1926, 08, 17]), ('label', [1])]"
)
output
=
""
if
self
.
_proto_info
is
None
:
self
.
_proto_info
=
[]
for
item
in
line
:
name
,
elements
=
item
if
not
isinstance
(
name
,
str
):
raise
ValueError
(
"name%s must be in str type"
%
type
(
name
))
if
not
isinstance
(
elements
,
list
):
raise
ValueError
(
"elements%s must be in list type"
%
type
(
elements
))
if
not
elements
:
raise
ValueError
(
"the elements of each field can not be empty, you need padding it in process()."
)
self
.
_proto_info
.
append
((
name
,
"uint64"
))
if
output
:
output
+=
" "
output
+=
str
(
len
(
elements
))
for
elem
in
elements
:
if
isinstance
(
elem
,
float
):
self
.
_proto_info
[
-
1
]
=
(
name
,
"float"
)
elif
not
isinstance
(
elem
,
int
)
and
not
isinstance
(
elem
,
long
):
raise
ValueError
(
"the type of element%s must be in int or float"
%
type
(
elem
))
output
+=
" "
+
str
(
elem
)
else
:
if
len
(
line
)
!=
len
(
self
.
_proto_info
):
raise
ValueError
(
"the complete field set of two given line are inconsistent."
)
for
index
,
item
in
enumerate
(
line
):
name
,
elements
=
item
if
not
isinstance
(
name
,
str
):
raise
ValueError
(
"name%s must be in str type"
%
type
(
name
))
if
not
isinstance
(
elements
,
list
):
raise
ValueError
(
"elements%s must be in list type"
%
type
(
elements
))
if
not
elements
:
raise
ValueError
(
"the elements of each field can not be empty, you need padding it in process()."
)
if
name
!=
self
.
_proto_info
[
index
][
0
]:
raise
ValueError
(
"the field name of two given line are not match: require<%s>, get<%s>."
%
(
self
.
_proto_info
[
index
][
0
],
name
))
if
output
:
output
+=
" "
output
+=
str
(
len
(
elements
))
for
elem
in
elements
:
if
self
.
_proto_info
[
index
][
1
]
!=
"float"
:
if
isinstance
(
elem
,
float
):
self
.
_proto_info
[
index
]
=
(
name
,
"float"
)
elif
not
isinstance
(
elem
,
int
)
and
not
isinstance
(
elem
,
long
):
raise
ValueError
(
"the type of element%s must be in int or float"
%
type
(
elem
))
output
+=
" "
+
str
(
elem
)
return
output
+
"
\n
"
python/setup.py.in
浏览文件 @
4f06cd17
...
...
@@ -188,6 +188,7 @@ packages=['paddle',
'paddle.fluid.transpiler',
'paddle.fluid.transpiler.details',
'paddle.fluid.incubate',
'paddle.fluid.incubate.data_generator',
'paddle.fluid.incubate.fleet',
'paddle.fluid.incubate.checkpoint',
'paddle.fluid.incubate.fleet.base',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录