From 4f06cd17d43f48bb15a28ca63cbdf35e3db49e7d Mon Sep 17 00:00:00 2001 From: tianshuo78520a <707759223@qq.com> Date: Thu, 6 May 2021 20:39:48 +0800 Subject: [PATCH] Pick revert data generator (#32700) * revert data_generator * add setup.py --- .../fluid/incubate/data_generator/__init__.py | 343 ++++++++++++++++++ python/setup.py.in | 1 + 2 files changed, 344 insertions(+) create mode 100644 python/paddle/fluid/incubate/data_generator/__init__.py diff --git a/python/paddle/fluid/incubate/data_generator/__init__.py b/python/paddle/fluid/incubate/data_generator/__init__.py new file mode 100644 index 00000000000..b7c1c9863b0 --- /dev/null +++ b/python/paddle/fluid/incubate/data_generator/__init__.py @@ -0,0 +1,343 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import sys + +__all__ = ['MultiSlotDataGenerator', 'MultiSlotStringDataGenerator'] + + +class DataGenerator(object): + """ + DataGenerator is a general Base class for user to inherit + A user who wants to define his/her own python processing logic + with paddle.fluid.dataset should inherit this class. + """ + + def __init__(self): + self._proto_info = None + self.batch_size_ = 32 + + def _set_line_limit(self, line_limit): + if not isinstance(line_limit, int): + raise ValueError("line_limit%s must be in int type" % + type(line_limit)) + if line_limit < 1: + raise ValueError("line_limit can not less than 1") + self._line_limit = line_limit + + def set_batch(self, batch_size): + ''' + Set batch size of current DataGenerator + This is necessary only if a user wants to define generator_batch + + Example: + .. code-block:: python + import paddle.fluid.incubate.data_generator as dg + class MyData(dg.DataGenerator): + def generate_sample(self, line): + def local_iter(): + int_words = [int(x) for x in line.split()] + yield ("words", int_words) + return local_iter + def generate_batch(self, samples): + def local_iter(): + for s in samples: + yield ("words", s[1].extend([s[1][0]])) + mydata = MyData() + mydata.set_batch(128) + + ''' + self.batch_size_ = batch_size + + def run_from_memory(self): + ''' + This function generator data from memory, it is usually used for + debug and benchmarking + Example: + .. code-block:: python + import paddle.fluid.incubate.data_generator as dg + class MyData(dg.DataGenerator): + def generate_sample(self, line): + def local_iter(): + yield ("words", [1, 2, 3, 4]) + return local_iter + mydata = MyData() + mydata.run_from_memory() + ''' + batch_samples = [] + line_iter = self.generate_sample(None) + for user_parsed_line in line_iter(): + if user_parsed_line == None: + continue + batch_samples.append(user_parsed_line) + if len(batch_samples) == self.batch_size_: + batch_iter = self.generate_batch(batch_samples) + for sample in batch_iter(): + sys.stdout.write(self._gen_str(sample)) + batch_samples = [] + if len(batch_samples) > 0: + batch_iter = self.generate_batch(batch_samples) + for sample in batch_iter(): + sys.stdout.write(self._gen_str(sample)) + + def run_from_stdin(self): + ''' + This function reads the data row from stdin, parses it with the + process function, and further parses the return value of the + process function with the _gen_str function. The parsed data will + be wrote to stdout and the corresponding protofile will be + generated. + Example: + + .. code-block:: python + import paddle.fluid.incubate.data_generator as dg + class MyData(dg.DataGenerator): + def generate_sample(self, line): + def local_iter(): + int_words = [int(x) for x in line.split()] + yield ("words", [int_words]) + return local_iter + mydata = MyData() + mydata.run_from_stdin() + ''' + batch_samples = [] + for line in sys.stdin: + line_iter = self.generate_sample(line) + for user_parsed_line in line_iter(): + if user_parsed_line == None: + continue + batch_samples.append(user_parsed_line) + if len(batch_samples) == self.batch_size_: + batch_iter = self.generate_batch(batch_samples) + for sample in batch_iter(): + sys.stdout.write(self._gen_str(sample)) + batch_samples = [] + if len(batch_samples) > 0: + batch_iter = self.generate_batch(batch_samples) + for sample in batch_iter(): + sys.stdout.write(self._gen_str(sample)) + + def _gen_str(self, line): + ''' + Further processing the output of the process() function rewritten by + user, outputting data that can be directly read by the datafeed,and + updating proto_info information. + Args: + line(str): the output of the process() function rewritten by user. + Returns: + Return a string data that can be read directly by the datafeed. + ''' + raise NotImplementedError( + "pls use MultiSlotDataGenerator or PairWiseDataGenerator") + + def generate_sample(self, line): + ''' + This function needs to be overridden by the user to process the + original data row into a list or tuple. + Args: + line(str): the original data row + Returns: + Returns the data processed by the user. + The data format is list or tuple: + [(name, [feasign, ...]), ...] + or ((name, [feasign, ...]), ...) + + For example: + [("words", [1926, 08, 17]), ("label", [1])] + or (("words", [1926, 08, 17]), ("label", [1])) + Note: + The type of feasigns must be in int or float. Once the float + element appears in the feasign, the type of that slot will be + processed into a float. + Example: + .. code-block:: python + import paddle.fluid.incubate.data_generator as dg + class MyData(dg.DataGenerator): + def generate_sample(self, line): + def local_iter(): + int_words = [int(x) for x in line.split()] + yield ("words", [int_words]) + return local_iter + ''' + raise NotImplementedError( + "Please rewrite this function to return a list or tuple: " + + "[(name, [feasign, ...]), ...] or ((name, [feasign, ...]), ...)") + + def generate_batch(self, samples): + ''' + This function needs to be overridden by the user to process the + generated samples from generate_sample(self, str) function + It is usually used as batch processing when a user wants to + do preprocessing on a batch of samples, e.g. padding according to + the max length of a sample in the batch + Args: + samples(list tuple): generated sample from generate_sample + Returns: + a python generator, the same format as return value of generate_sample + Example: + .. code-block:: python + import paddle.fluid.incubate.data_generator as dg + class MyData(dg.DataGenerator): + def generate_sample(self, line): + def local_iter(): + int_words = [int(x) for x in line.split()] + yield ("words", int_words) + return local_iter + def generate_batch(self, samples): + def local_iter(): + for s in samples: + yield ("words", s[1].extend([s[1][0]])) + mydata = MyData() + mydata.set_batch(128) + ''' + + def local_iter(): + for sample in samples: + yield sample + + return local_iter + + +# TODO: guru4elephant +# add more generalized DataGenerator that can adapt user-defined slot +# for example, [(name, float_list), (name, str_list), (name, int_list)] +class MultiSlotStringDataGenerator(DataGenerator): + def _gen_str(self, line): + ''' + Further processing the output of the process() function rewritten by + user, outputting data that can be directly read by the MultiSlotDataFeed, + and updating proto_info information. + The input line will be in this format: + >>> [(name, [str(feasign), ...]), ...] + >>> or ((name, [str(feasign), ...]), ...) + The output will be in this format: + >>> [ids_num id1 id2 ...] ... + For example, if the input is like this: + >>> [("words", ["1926", "08", "17"]), ("label", ["1"])] + >>> or (("words", ["1926", "08", "17"]), ("label", ["1"])) + the output will be: + >>> 3 1234 2345 3456 1 1 + Args: + line(str): the output of the process() function rewritten by user. + Returns: + Return a string data that can be read directly by the MultiSlotDataFeed. + ''' + if not isinstance(line, list) and not isinstance(line, tuple): + raise ValueError( + "the output of process() must be in list or tuple type" + "Examples: [('words', ['1926', '08', '17']), ('label', ['1'])]") + output = "" + for index, item in enumerate(line): + name, elements = item + if output: + output += " " + out_str = [] + out_str.append(str(len(elements))) + out_str.extend(elements) + output += " ".join(out_str) + return output + "\n" + + +class MultiSlotDataGenerator(DataGenerator): + def _gen_str(self, line): + ''' + Further processing the output of the process() function rewritten by + user, outputting data that can be directly read by the MultiSlotDataFeed, + and updating proto_info information. + The input line will be in this format: + >>> [(name, [feasign, ...]), ...] + >>> or ((name, [feasign, ...]), ...) + The output will be in this format: + >>> [ids_num id1 id2 ...] ... + The proto_info will be in this format: + >>> [(name, type), ...] + + For example, if the input is like this: + >>> [("words", [1926, 08, 17]), ("label", [1])] + >>> or (("words", [1926, 08, 17]), ("label", [1])) + the output will be: + >>> 3 1234 2345 3456 1 1 + the proto_info will be: + >>> [("words", "uint64"), ("label", "uint64")] + Args: + line(str): the output of the process() function rewritten by user. + Returns: + Return a string data that can be read directly by the MultiSlotDataFeed. + ''' + if not isinstance(line, list) and not isinstance(line, tuple): + raise ValueError( + "the output of process() must be in list or tuple type" + "Example: [('words', [1926, 08, 17]), ('label', [1])]") + output = "" + + if self._proto_info is None: + self._proto_info = [] + for item in line: + name, elements = item + if not isinstance(name, str): + raise ValueError("name%s must be in str type" % type(name)) + if not isinstance(elements, list): + raise ValueError("elements%s must be in list type" % + type(elements)) + if not elements: + raise ValueError( + "the elements of each field can not be empty, you need padding it in process()." + ) + self._proto_info.append((name, "uint64")) + if output: + output += " " + output += str(len(elements)) + for elem in elements: + if isinstance(elem, float): + self._proto_info[-1] = (name, "float") + elif not isinstance(elem, int) and not isinstance(elem, + long): + raise ValueError( + "the type of element%s must be in int or float" % + type(elem)) + output += " " + str(elem) + else: + if len(line) != len(self._proto_info): + raise ValueError( + "the complete field set of two given line are inconsistent.") + for index, item in enumerate(line): + name, elements = item + if not isinstance(name, str): + raise ValueError("name%s must be in str type" % type(name)) + if not isinstance(elements, list): + raise ValueError("elements%s must be in list type" % + type(elements)) + if not elements: + raise ValueError( + "the elements of each field can not be empty, you need padding it in process()." + ) + if name != self._proto_info[index][0]: + raise ValueError( + "the field name of two given line are not match: require<%s>, get<%s>." + % (self._proto_info[index][0], name)) + if output: + output += " " + output += str(len(elements)) + for elem in elements: + if self._proto_info[index][1] != "float": + if isinstance(elem, float): + self._proto_info[index] = (name, "float") + elif not isinstance(elem, int) and not isinstance(elem, + long): + raise ValueError( + "the type of element%s must be in int or float" + % type(elem)) + output += " " + str(elem) + return output + "\n" diff --git a/python/setup.py.in b/python/setup.py.in index 0e94d02cd6f..d9ca3038fb2 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -188,6 +188,7 @@ packages=['paddle', 'paddle.fluid.transpiler', 'paddle.fluid.transpiler.details', 'paddle.fluid.incubate', + 'paddle.fluid.incubate.data_generator', 'paddle.fluid.incubate.fleet', 'paddle.fluid.incubate.checkpoint', 'paddle.fluid.incubate.fleet.base', -- GitLab