Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
4ecdb6f4
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4ecdb6f4
编写于
12月 13, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into feature/tensor_type
test=develop
上级
aa38fc4c
5384206a
变更
50
隐藏空白更改
内联
并排
Showing
50 changed file
with
2325 addition
and
640 deletion
+2325
-640
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+4
-0
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+5
-8
paddle/fluid/framework/details/computation_op_handle.cc
paddle/fluid/framework/details/computation_op_handle.cc
+4
-2
paddle/fluid/framework/details/computation_op_handle.h
paddle/fluid/framework/details/computation_op_handle.h
+5
-1
paddle/fluid/framework/details/eager_deletion_op_handle.cc
paddle/fluid/framework/details/eager_deletion_op_handle.cc
+122
-0
paddle/fluid/framework/details/eager_deletion_op_handle.h
paddle/fluid/framework/details/eager_deletion_op_handle.h
+58
-0
paddle/fluid/framework/details/eager_deletion_pass.cc
paddle/fluid/framework/details/eager_deletion_pass.cc
+101
-0
paddle/fluid/framework/details/eager_deletion_pass.h
paddle/fluid/framework/details/eager_deletion_pass.h
+32
-0
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+3
-3
paddle/fluid/framework/details/op_graph_view.cc
paddle/fluid/framework/details/op_graph_view.cc
+3
-0
paddle/fluid/framework/details/op_graph_view.h
paddle/fluid/framework/details/op_graph_view.h
+28
-1
paddle/fluid/framework/details/reference_count_op_handle.h
paddle/fluid/framework/details/reference_count_op_handle.h
+0
-138
paddle/fluid/framework/details/reference_count_pass.cc
paddle/fluid/framework/details/reference_count_pass.cc
+199
-147
paddle/fluid/framework/details/reference_count_pass.h
paddle/fluid/framework/details/reference_count_pass.h
+0
-5
paddle/fluid/framework/details/reference_count_pass_helper.cc
...le/fluid/framework/details/reference_count_pass_helper.cc
+21
-0
paddle/fluid/framework/details/reference_count_pass_helper.h
paddle/fluid/framework/details/reference_count_pass_helper.h
+51
-0
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
...id/framework/details/scope_buffered_ssa_graph_executor.cc
+0
-18
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+96
-41
paddle/fluid/framework/executor.h
paddle/fluid/framework/executor.h
+13
-40
paddle/fluid/framework/garbage_collector.cc
paddle/fluid/framework/garbage_collector.cc
+89
-0
paddle/fluid/framework/garbage_collector.h
paddle/fluid/framework/garbage_collector.h
+59
-92
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+9
-2
paddle/fluid/framework/ir/pass.h
paddle/fluid/framework/ir/pass.h
+9
-2
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+2
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+100
-40
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+1
-23
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+6
-0
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+1
-0
paddle/fluid/framework/tensor.h
paddle/fluid/framework/tensor.h
+4
-0
paddle/fluid/operators/controlflow/while_op.cc
paddle/fluid/operators/controlflow/while_op.cc
+28
-2
paddle/fluid/operators/psroi_pool_op.cc
paddle/fluid/operators/psroi_pool_op.cc
+173
-0
paddle/fluid/operators/psroi_pool_op.cu
paddle/fluid/operators/psroi_pool_op.cu
+294
-0
paddle/fluid/operators/psroi_pool_op.h
paddle/fluid/operators/psroi_pool_op.h
+253
-0
paddle/fluid/operators/reader/ctr_reader.h
paddle/fluid/operators/reader/ctr_reader.h
+6
-6
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+8
-1
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+2
-8
paddle/fluid/platform/stream_callback_manager.cc
paddle/fluid/platform/stream_callback_manager.cc
+63
-0
paddle/fluid/platform/stream_callback_manager.h
paddle/fluid/platform/stream_callback_manager.h
+13
-48
paddle/fluid/pybind/tensor_py.h
paddle/fluid/pybind/tensor_py.h
+6
-6
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+3
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+55
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+12
-3
python/paddle/fluid/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
...d/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
+86
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_gru_net.py
...ddle/fluid/tests/unittests/test_eager_deletion_gru_net.py
+49
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_lstm_net.py
...dle/fluid/tests/unittests/test_eager_deletion_lstm_net.py
+50
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_mnist.py
...paddle/fluid/tests/unittests/test_eager_deletion_mnist.py
+27
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_transformer.py
.../fluid/tests/unittests/test_eager_deletion_transformer.py
+27
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+10
-0
python/paddle/fluid/tests/unittests/test_psroi_pool_op.py
python/paddle/fluid/tests/unittests/test_psroi_pool_op.py
+134
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
4ecdb6f4
...
...
@@ -198,6 +198,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
4ecdb6f4
...
...
@@ -72,6 +72,8 @@ cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto
cc_test
(
lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory
)
nv_test
(
lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor
)
cc_library
(
garbage_collector SRCS garbage_collector.cc DEPS device_context memory
)
cc_library
(
reader SRCS reader.cc DEPS lod_tensor ddim
)
cc_test
(
reader_test SRCS reader_test.cc DEPS reader
)
...
...
@@ -183,6 +185,8 @@ else()
cc_test
(
test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op
)
endif
()
target_link_libraries
(
executor garbage_collector
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph build_strategy
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
4ecdb6f4
...
...
@@ -45,10 +45,10 @@ cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base s
cc_library
(
modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper
)
if
(
WITH_GPU
)
cc_library
(
reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance
_op_handle graph graph_helper pass
)
endif
(
)
cc_library
(
reference_count_pass_helper SRCS reference_count_pass_helper.cc DEPS garbage_collector computation_op_handle
)
cc_library
(
eager_deletion_op_handle SRCS eager_deletion_op_handle.cc DEPS lod_tensor selected_rows reference_count_pass_helper
)
cc_library
(
eager_deletion_pass SRCS eager_deletion_pass.cc DEPS computation_op_handle eager_deletion
_op_handle graph graph_helper pass
)
cc_library
(
reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle graph graph_helper pass op_graph_view reference_count_pass_helper
)
cc_library
(
sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass
)
cc_library
(
all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass
)
...
...
@@ -56,10 +56,7 @@ cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_he
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle
)
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass
)
if
(
WITH_GPU
)
list
(
APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass
)
endif
()
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS
${
SSA_GRAPH_EXECUTOR_DEPS
}
)
...
...
paddle/fluid/framework/details/computation_op_handle.cc
浏览文件 @
4ecdb6f4
...
...
@@ -20,11 +20,13 @@ namespace paddle {
namespace
framework
{
namespace
details
{
ComputationOpHandle
::
ComputationOpHandle
(
ir
::
Node
*
node
,
Scope
*
scope
,
platform
::
Place
place
)
platform
::
Place
place
,
size_t
scope_idx
)
:
OpHandleBase
(
node
),
op_
(
framework
::
OpRegistry
::
CreateOp
(
*
node
->
Op
())),
scope_
(
scope
),
place_
(
place
)
{}
place_
(
place
),
scope_idx_
(
scope_idx
)
{}
void
ComputationOpHandle
::
RunImpl
()
{
WaitInputVarGenerated
(
place_
);
...
...
paddle/fluid/framework/details/computation_op_handle.h
浏览文件 @
4ecdb6f4
...
...
@@ -28,7 +28,8 @@ namespace framework {
namespace
details
{
struct
ComputationOpHandle
:
public
OpHandleBase
{
public:
ComputationOpHandle
(
ir
::
Node
*
node
,
Scope
*
scope
,
platform
::
Place
place
);
ComputationOpHandle
(
ir
::
Node
*
node
,
Scope
*
scope
,
platform
::
Place
place
,
size_t
scope_idx
);
std
::
string
Name
()
const
override
;
...
...
@@ -38,6 +39,8 @@ struct ComputationOpHandle : public OpHandleBase {
void
SetLockAndRecordEventFree
(
bool
b
)
{
is_lock_and_record_event_free_
=
b
;
}
size_t
GetScopeIdx
()
const
{
return
scope_idx_
;
}
protected:
void
RunImpl
()
override
;
...
...
@@ -47,6 +50,7 @@ struct ComputationOpHandle : public OpHandleBase {
std
::
unique_ptr
<
OperatorBase
>
op_
;
Scope
*
scope_
;
platform
::
Place
place_
;
size_t
scope_idx_
;
bool
is_lock_and_record_event_free_
{
false
};
};
}
// namespace details
...
...
paddle/fluid/framework/details/eager_deletion_op_handle.cc
0 → 100644
浏览文件 @
4ecdb6f4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
namespace
paddle
{
namespace
framework
{
namespace
details
{
EagerDeletionOpHandle
::
EagerDeletionOpHandle
(
ir
::
Node
*
node
,
const
Scope
*
scope
,
const
platform
::
Place
&
place
,
const
std
::
unordered_set
<
std
::
string
>
&
var_names
,
GarbageCollector
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
)
:
OpHandleBase
(
node
),
scope_
(
scope
),
var_names_
(
var_names
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place
))
{
dev_ctx_
=
reinterpret_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
dynamic_cast
<
StreamGarbageCollector
*>
(
gc_
))
{
platform
::
CUDADeviceGuard
guard
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
).
device
);
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
PADDLE_ENFORCE_NOT_NULL
(
event_
);
}
}
#endif
}
EagerDeletionOpHandle
::~
EagerDeletionOpHandle
()
{
#ifdef PADDLE_WITH_CUDA
if
(
event_
)
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx_
->
GetPlace
());
platform
::
CUDADeviceGuard
guard
(
gpu_place
.
device
);
PADDLE_ENFORCE
(
cudaEventDestroy
(
event_
));
}
#endif
}
std
::
string
EagerDeletionOpHandle
::
Name
()
const
{
return
"eager_deletion"
;
}
void
EagerDeletionOpHandle
::
RunImpl
()
{
auto
*
exec_scope
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
garbages
;
for
(
auto
&
name
:
var_names_
)
{
auto
it
=
ref_cnts_
->
find
(
name
);
// Var not found, not reference count has not decreased to 0
if
(
it
==
ref_cnts_
->
end
()
||
it
->
second
.
fetch_sub
(
1
)
!=
1
)
{
continue
;
}
auto
*
var
=
exec_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
)
{
continue
;
}
VLOG
(
2
)
<<
"Erase variable "
<<
name
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
garbages
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
()
->
MoveMemoryHolder
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
garbages
.
emplace_back
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
()
->
MoveMemoryHolder
());
}
else
if
(
var
->
IsType
<
LoDTensorArray
>
())
{
auto
*
tensor_arr
=
var
->
GetMutable
<
LoDTensorArray
>
();
for
(
auto
&
t
:
*
tensor_arr
)
{
garbages
.
emplace_back
(
t
.
MoveMemoryHolder
());
}
}
else
{
PADDLE_THROW
(
"Type %s of %s is not supported eager deletion"
,
var
->
Type
().
name
(),
name
);
}
}
if
(
!
garbages
.
empty
())
{
ClearGarbages
(
&
garbages
);
}
}
void
EagerDeletionOpHandle
::
ClearGarbages
(
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
*
garbages
)
{
#ifdef PADDLE_WITH_CUDA
if
(
event_
)
{
auto
compute_stream
=
dev_ctx_
->
stream
();
auto
callback_stream
=
reinterpret_cast
<
StreamGarbageCollector
*>
(
gc_
)
->
stream
();
auto
callback_func
=
[
=
]()
{
PADDLE_ENFORCE
(
cudaEventRecord
(
event_
,
compute_stream
));
PADDLE_ENFORCE
(
cudaStreamWaitEvent
(
callback_stream
,
event_
,
0
));
};
gc_
->
Add
(
std
::
move
(
*
garbages
),
callback_func
);
}
else
{
#endif
gc_
->
Add
(
std
::
move
(
*
garbages
));
#ifdef PADDLE_WITH_CUDA
}
#endif
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/eager_deletion_op_handle.h
0 → 100644
浏览文件 @
4ecdb6f4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <deque>
#include <string>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
namespace
paddle
{
namespace
framework
{
class
Scope
;
namespace
details
{
class
EagerDeletionOpHandle
:
public
OpHandleBase
{
public:
EagerDeletionOpHandle
(
ir
::
Node
*
node
,
const
Scope
*
scope
,
const
platform
::
Place
&
place
,
const
std
::
unordered_set
<
std
::
string
>
&
var_names
,
GarbageCollector
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
);
~
EagerDeletionOpHandle
();
std
::
string
Name
()
const
override
;
protected:
void
RunImpl
()
override
;
private:
void
ClearGarbages
(
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
*
garbages
);
const
Scope
*
scope_
;
std
::
unordered_set
<
std
::
string
>
var_names_
;
GarbageCollector
*
gc_
;
// not own
AtomicReferenceCountMap
*
ref_cnts_
;
// not own
#ifdef PADDLE_WITH_CUDA
platform
::
CUDADeviceContext
*
dev_ctx_
{
nullptr
};
cudaEvent_t
event_
{
nullptr
};
#endif
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/eager_deletion_pass.cc
0 → 100644
浏览文件 @
4ecdb6f4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <queue>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_pass.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
unique_ptr
<
ir
::
Graph
>
EagerDeletionPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
std
::
vector
<
AtomicReferenceCountMap
>>
(
kRuntimeReferenceCount
);
PADDLE_ENFORCE
(
ref_cnts
.
empty
(),
"kRuntimeReferenceCount should be initialized here!"
);
const
auto
&
vars
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
);
ref_cnts
.
resize
(
vars
.
size
());
const
auto
&
last_live_ops
=
Get
<
std
::
vector
<
LastLiveOpsOfVars
>>
(
kLastLiveOpsOfVars
);
const
auto
&
gcs
=
Get
<
GarbageCollectorMap
>
(
kGarbageCollector
);
const
auto
&
places
=
Get
<
std
::
vector
<
platform
::
Place
>>
(
kAllPlaces
);
// a reverse map of last_live_ops
// i.e., last op --> variable names which can be deleted.
std
::
unordered_map
<
ComputationOpHandle
*
,
std
::
unordered_set
<
std
::
string
>>
op_vars_map
;
for
(
auto
&
var_ops_map
:
last_live_ops
)
{
for
(
auto
&
var_ops_pair
:
var_ops_map
)
{
const
std
::
string
&
var_name
=
var_ops_pair
.
first
;
for
(
auto
*
op
:
var_ops_pair
.
second
)
{
op_vars_map
[
op
].
insert
(
var_name
);
}
}
}
for
(
auto
&
pair
:
op_vars_map
)
{
auto
*
op
=
pair
.
first
;
auto
&
var_names
=
pair
.
second
;
auto
*
eager_deletion_node
=
graph
->
CreateEmptyNode
(
"eager_deletion"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
eager_deletion_op
=
new
EagerDeletionOpHandle
(
eager_deletion_node
,
op
->
GetScope
(),
op
->
GetPlace
(),
var_names
,
gcs
.
at
(
places
[
op
->
GetScopeIdx
()]).
get
(),
&
(
ref_cnts
[
op
->
GetScopeIdx
()]));
auto
it
=
std
::
find_if
(
op
->
Outputs
().
begin
(),
op
->
Outputs
().
end
(),
[](
VarHandleBase
*
var
)
{
return
dynamic_cast
<
DummyVarHandle
*>
(
var
)
!=
nullptr
;
});
if
(
it
!=
op
->
Outputs
().
end
())
{
eager_deletion_op
->
AddInput
(
*
it
);
}
else
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
op
->
AddOutput
(
dep_var
);
eager_deletion_op
->
AddInput
(
dep_var
);
}
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dummy_leaf
);
eager_deletion_op
->
AddOutput
(
dummy_leaf
);
}
VLOG
(
10
)
<<
"Create "
<<
op_vars_map
.
size
()
<<
" EagerDeletionOpHandle(s)"
;
return
graph
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
eager_deletion_pass
,
paddle
::
framework
::
details
::
EagerDeletionPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kRuntimeReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLastLiveOpsOfVars
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kAllPlaces
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGarbageCollector
);
paddle/fluid/framework/details/eager_deletion_pass.h
0 → 100644
浏览文件 @
4ecdb6f4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
EagerDeletionPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
4ecdb6f4
...
...
@@ -565,7 +565,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
int
dev_id
)
const
{
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
ComputationOpHandle
(
result
->
CreateOpNode
(
node
->
Op
()),
local_scopes_
[
dev_id
],
places_
[
dev_id
]));
local_scopes_
[
dev_id
],
places_
[
dev_id
]
,
dev_id
));
CreateOpHandleIOs
(
result
,
node
,
dev_id
);
}
...
...
@@ -688,8 +688,8 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
for
(
size_t
scope_idx
=
0
;
scope_idx
<
num_places
;
++
scope_idx
)
{
auto
p
=
places_
[
scope_idx
];
auto
s
=
local_scopes_
[
scope_idx
];
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
ComputationOpHandle
(
result
->
CreateOpNode
(
node
->
Op
()),
s
,
p
));
result
->
Get
<
GraphOps
>
(
kGraphOps
).
emplace_back
(
new
ComputationOpHandle
(
result
->
CreateOpNode
(
node
->
Op
()),
s
,
p
,
scope_idx
));
CreateOpHandleIOs
(
result
,
node
,
scope_idx
);
}
}
...
...
paddle/fluid/framework/details/op_graph_view.cc
浏览文件 @
4ecdb6f4
...
...
@@ -23,6 +23,8 @@ namespace details {
OpGraphView
::
OpGraphView
(
const
std
::
vector
<
OpHandleBase
*>
&
ops
)
{
Build
(
ops
);
}
void
OpGraphView
::
Build
(
const
std
::
vector
<
OpHandleBase
*>
&
ops
)
{
preceding_ops_
.
clear
();
pending_ops_
.
clear
();
for
(
auto
&
op
:
ops
)
{
preceding_ops_
[
op
];
pending_ops_
[
op
];
...
...
@@ -40,6 +42,7 @@ void OpGraphView::Build(const std::vector<OpHandleBase *> &ops) {
std
::
unordered_set
<
OpHandleBase
*>
OpGraphView
::
AllOps
()
const
{
std
::
unordered_set
<
OpHandleBase
*>
ret
;
ret
.
reserve
(
preceding_ops_
.
size
());
for
(
auto
&
pair
:
preceding_ops_
)
{
ret
.
insert
(
pair
.
first
);
}
...
...
paddle/fluid/framework/details/op_graph_view.h
浏览文件 @
4ecdb6f4
...
...
@@ -14,7 +14,7 @@
#pragma once
#include <
memory
>
#include <
queue
>
#include <unordered_map>
#include <unordered_set>
#include <vector>
...
...
@@ -34,6 +34,11 @@ class OpGraphView {
bool
HasOp
(
OpHandleBase
*
op
)
const
;
// Use a visitor to visit all pending ops of op
// Stop when callback returns false
template
<
typename
Callback
>
bool
VisitAllPendingOps
(
OpHandleBase
*
op
,
Callback
&&
callback
)
const
;
private:
void
Build
(
const
std
::
vector
<
OpHandleBase
*>
&
ops
);
void
EnforceHasOp
(
OpHandleBase
*
op
)
const
;
...
...
@@ -44,6 +49,28 @@ class OpGraphView {
pending_ops_
;
};
template
<
typename
Callback
>
bool
OpGraphView
::
VisitAllPendingOps
(
OpHandleBase
*
op
,
Callback
&&
callback
)
const
{
EnforceHasOp
(
op
);
std
::
unordered_set
<
OpHandleBase
*>
visited
;
std
::
queue
<
OpHandleBase
*>
q
;
q
.
push
(
op
);
do
{
op
=
q
.
front
();
q
.
pop
();
for
(
auto
&
pending_op
:
pending_ops_
.
at
(
op
))
{
if
(
visited
.
count
(
pending_op
)
==
0
)
{
visited
.
insert
(
pending_op
);
if
(
!
callback
(
pending_op
))
{
return
false
;
}
}
}
}
while
(
!
q
.
empty
());
return
true
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_op_handle.h
已删除
100644 → 0
浏览文件 @
aa38fc4c
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <atomic>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
using
ReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
int
>
;
using
AtomicReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
std
::
atomic
<
int
>>
;
using
DeviceReferenceCountMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
ReferenceCountMap
>>
;
using
AtomicDeviceReferenceCountMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
AtomicReferenceCountMap
>>
;
using
DeviceGarbageCollectorMap
=
std
::
unordered_map
<
int
,
std
::
unique_ptr
<
GarbageCollector
<
framework
::
Tensor
>>>
;
class
ReferenceCountOpHandle
:
public
OpHandleBase
{
public:
ReferenceCountOpHandle
(
ir
::
Node
*
node
,
const
Scope
*
scope
,
const
platform
::
CUDAPlace
&
place
,
const
std
::
vector
<
std
::
string
>
&
var_names
,
GarbageCollector
<
Tensor
>
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
)
:
OpHandleBase
(
node
),
scope_
(
scope
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
dev_ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
IsStreamGarabageCollector
())
{
platform
::
SetDeviceId
(
place
.
device
);
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
}
for
(
auto
&
name
:
var_names
)
AddVar
(
name
);
}
~
ReferenceCountOpHandle
()
{
if
(
IsStreamGarabageCollector
())
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_ctx_
->
GetPlace
());
platform
::
SetDeviceId
(
gpu_place
.
device
);
PADDLE_ENFORCE
(
cudaEventDestroy
(
event_
));
}
}
std
::
string
Name
()
const
override
{
return
"reference_count"
;
}
void
AddVar
(
const
std
::
string
&
name
)
{
auto
it
=
var_names_
.
find
(
name
);
if
(
it
!=
var_names_
.
end
())
++
(
it
->
second
);
else
var_names_
[
name
]
=
1
;
}
protected:
void
RunImpl
()
override
{
auto
*
exec_scope
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
std
::
vector
<
Tensor
*>
tensors
;
for
(
auto
&
pair
:
var_names_
)
{
auto
&
name
=
pair
.
first
;
auto
it
=
ref_cnts_
->
find
(
name
);
if
(
it
==
ref_cnts_
->
end
())
continue
;
auto
*
var
=
exec_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
if
(
it
->
second
.
fetch_sub
(
pair
.
second
)
<=
pair
.
second
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
());
}
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
if
(
it
->
second
.
fetch_sub
(
pair
.
second
)
<=
pair
.
second
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
());
}
}
}
if
(
!
tensors
.
empty
())
{
ClearTensors
(
tensors
);
}
}
private:
void
ClearTensors
(
const
std
::
vector
<
Tensor
*>
&
tensors
)
{
auto
*
gc
=
dynamic_cast
<
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
);
if
(
gc
!=
nullptr
)
{
auto
compute_stream
=
dev_ctx_
->
stream
();
auto
callback_stream
=
gc
->
stream
();
auto
callback_func
=
[
=
]()
{
PADDLE_ENFORCE
(
cudaEventRecord
(
event_
,
compute_stream
));
PADDLE_ENFORCE
(
cudaStreamWaitEvent
(
callback_stream
,
event_
,
0
));
};
gc_
->
Add
(
tensors
,
callback_func
);
}
else
{
gc_
->
Add
(
tensors
);
}
}
bool
IsStreamGarabageCollector
()
const
{
return
dynamic_cast
<
const
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
)
!=
nullptr
;
}
const
Scope
*
scope_
;
platform
::
CUDADeviceContext
*
dev_ctx_
;
std
::
unordered_map
<
std
::
string
,
int
>
var_names_
;
GarbageCollector
<
Tensor
>
*
gc_
;
// not own
AtomicReferenceCountMap
*
ref_cnts_
;
// not own
cudaEvent_t
event_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_pass.cc
浏览文件 @
4ecdb6f4
...
...
@@ -14,187 +14,240 @@
#include <queue>
#include <string>
#include <type_traits>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_graph_view.h"
#include "paddle/fluid/framework/details/reference_count_pass.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
static
ComputationOpHandle
*
FindNextComputationOpHandle
(
VarHandle
*
var_in
)
{
std
::
queue
<
VarHandleBase
*>
queue
;
queue
.
push
(
var_in
);
do
{
auto
*
var
=
queue
.
front
();
queue
.
pop
();
for
(
auto
*
op
:
var
->
PendingOps
())
{
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
if
(
compute_op
!=
nullptr
&&
compute_op
->
GetPlace
()
==
var_in
->
place_
)
{
return
compute_op
;
// A functor to shrink/remove operators who depend on other operators in a set
class
ShrinkDepsOpFunctor
{
private:
enum
RelationShip
{
kSame
=
0
,
kNoDeps
=
1
,
kBefore
=
2
,
kAfter
=
3
};
public:
explicit
ShrinkDepsOpFunctor
(
const
std
::
vector
<
OpHandleBase
*>
&
all_ops
)
:
graph_
(
all_ops
)
{}
template
<
typename
OpSet
>
OpSet
operator
()(
const
OpSet
&
op_set
)
const
{
using
KeyType
=
typename
OpSet
::
key_type
;
static_assert
(
std
::
is_base_of
<
OpHandleBase
,
typename
std
::
remove_pointer
<
KeyType
>::
type
>::
value
,
"Key type of OpSet must be OpHandleBase, or derived of OpHandleBase"
);
if
(
op_set
.
size
()
<=
1
)
return
op_set
;
std
::
vector
<
OpHandleBase
*>
ops
(
op_set
.
begin
(),
op_set
.
end
());
OpSet
ret
;
auto
rels
=
GetRelations
(
ops
);
auto
not_before
=
[](
RelationShip
r
)
{
return
r
!=
kBefore
;
};
for
(
size_t
i
=
0
;
i
<
rels
.
size
();
++
i
)
{
if
(
std
::
all_of
(
rels
[
i
].
begin
(),
rels
[
i
].
end
(),
not_before
))
{
ret
.
emplace
(
static_cast
<
KeyType
>
(
ops
[
i
]));
}
for
(
auto
*
out_var
:
op
->
Outputs
())
{
queue
.
push
(
out_var
);
}
return
ret
;
}
private:
std
::
vector
<
std
::
vector
<
RelationShip
>>
GetRelations
(
const
std
::
vector
<
OpHandleBase
*>
&
ops
)
const
{
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
op_to_idx
;
for
(
size_t
i
=
0
;
i
<
ops
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
graph_
.
HasOp
(
ops
[
i
]),
"Op does not exist in graph"
);
op_to_idx
[
ops
[
i
]]
=
i
;
}
PADDLE_ENFORCE
(
op_to_idx
.
size
()
==
ops
.
size
(),
"Duplicate ops"
);
std
::
vector
<
std
::
vector
<
RelationShip
>>
ret
(
ops
.
size
());
for
(
auto
&
e
:
ret
)
{
e
.
assign
(
ops
.
size
(),
kSame
);
}
size_t
found_num
=
ops
.
size
();
size_t
total_num
=
ops
.
size
()
*
ops
.
size
();
auto
visitor
=
[
&
](
OpHandleBase
*
op
,
size_t
i
)
{
auto
it
=
op_to_idx
.
find
(
op
);
if
(
it
!=
op_to_idx
.
end
())
{
size_t
j
=
it
->
second
;
if
(
i
!=
j
&&
ret
[
i
][
j
]
==
kSame
)
{
ret
[
i
][
j
]
=
kBefore
;
ret
[
j
][
i
]
=
kAfter
;
found_num
+=
2
;
if
(
found_num
==
total_num
)
{
return
false
;
}
}
}
return
true
;
};
for
(
size_t
i
=
0
;
i
<
ops
.
size
();
++
i
)
{
auto
sub_visitor
=
[
&
,
i
](
OpHandleBase
*
op
)
{
return
visitor
(
op
,
i
);
};
if
(
!
graph_
.
VisitAllPendingOps
(
ops
[
i
],
sub_visitor
))
{
break
;
}
}
for
(
size_t
i
=
0
;
i
<
ops
.
size
();
++
i
)
{
for
(
size_t
j
=
i
+
1
;
j
<
ops
.
size
();
++
j
)
{
if
(
ret
[
i
][
j
]
!=
kSame
)
continue
;
ret
[
i
][
j
]
=
kNoDeps
;
ret
[
j
][
i
]
=
kNoDeps
;
}
}
return
ret
;
}
const
OpGraphView
graph_
;
};
/**
* Find the nearest downstream computation op handle. If the op is a
* computation op, just return itself.
*/
static
ComputationOpHandle
*
FindNextComputationOpHandleOrReturnItself
(
OpHandleBase
*
op
,
size_t
scope_idx
)
{
std
::
queue
<
OpHandleBase
*>
q
;
std
::
unordered_set
<
OpHandleBase
*>
visited
;
q
.
push
(
op
);
do
{
auto
*
op
=
q
.
front
();
q
.
pop
();
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
if
(
compute_op
!=
nullptr
&&
compute_op
->
GetScopeIdx
()
==
scope_idx
)
{
return
compute_op
;
}
for
(
auto
*
out_var
:
op
->
Outputs
())
{
for
(
auto
*
pending_op
:
out_var
->
PendingOps
())
{
if
(
visited
.
count
(
pending_op
))
continue
;
visited
.
insert
(
pending_op
);
}
}
}
while
(
!
q
ueue
.
empty
());
}
while
(
!
q
.
empty
());
return
nullptr
;
}
static
void
AddDependencyBetween
(
OpHandleBase
*
in
,
OpHandleBase
*
out
,
ir
::
Graph
*
graph
)
{
auto
it
=
std
::
find_if
(
in
->
Outputs
().
begin
(),
in
->
Outputs
().
end
(),
[](
VarHandleBase
*
var
)
{
return
dynamic_cast
<
DummyVarHandle
*>
(
var
)
!=
nullptr
;
});
if
(
it
!=
in
->
Outputs
().
end
())
{
out
->
AddInput
(
*
it
);
}
else
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
in
->
AddOutput
(
dep_var
);
out
->
AddInput
(
dep_var
);
static
std
::
unordered_set
<
ComputationOpHandle
*>
ExtractComputationOpFromLastLivedVar
(
VarHandle
*
var
,
size_t
scope_idx
,
const
ShrinkDepsOpFunctor
&
shrink_func
,
bool
*
ok
)
{
// stage one. Get last op for variable.
std
::
unordered_set
<
OpHandleBase
*>
candidates
;
{
if
(
var
->
PendingOps
().
empty
()
&&
var
->
GeneratedOp
())
{
// No operator depends on this variable. So the last operator is the op
// who generates this variable.
candidates
.
emplace
(
var
->
GeneratedOp
());
}
else
{
candidates
=
var
->
PendingOps
();
}
// No pending ops or generated op is nullptr
if
(
candidates
.
empty
())
{
*
ok
=
false
;
return
{};
}
}
// stage two. Try to cast them to computation op.
// return (*ok=false) when failed.
//
// The reason why we cannot make any types of op handle to be the last lived
// op is:
// some op handle may operate on many DeviceContext, however, our garbage
// collector can only wait one DeviceContext for now. So currently, we wait
// the nearest compute op.
std
::
unordered_set
<
ComputationOpHandle
*>
computation_op
;
{
for
(
auto
*
op
:
candidates
)
{
auto
*
compute_op
=
FindNextComputationOpHandleOrReturnItself
(
op
,
scope_idx
);
if
(
compute_op
==
nullptr
)
{
*
ok
=
false
;
return
{};
}
computation_op
.
emplace
(
compute_op
);
}
}
// stage three. Try to shrink computation op if they depend on each other.
// Get the smallest set of the most ops.
*
ok
=
true
;
return
shrink_func
(
computation_op
);
}
static
VarDesc
*
TryGetLatestVarDesc
(
const
std
::
vector
<
VarHandle
*>
&
vars
)
{
VarDesc
*
var_desc
=
nullptr
;
std
::
find_if
(
vars
.
rbegin
(),
vars
.
rend
(),
[
&
](
VarHandle
*
var_handle
)
->
bool
{
var_desc
=
var_handle
->
Node
()
->
Var
();
return
var_desc
!=
nullptr
;
});
return
var_desc
;
}
std
::
unique_ptr
<
ir
::
Graph
>
ReferenceCountPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
DeviceReferenceCountMap
>
(
kGlobalReferenceCount
);
auto
&
cur_ref_cnts
=
Get
<
AtomicDeviceReferenceCountMap
>
(
kCurReferenceCount
);
auto
&
gcs
=
Get
<
DeviceGarbageCollectorMap
>
(
kGarbageCollector
);
// It is not easy to find the right reference counts of varaibles in graph
// Step 1: Find all variables in computation ops
// Step 2: Find all variables in non-computation ops which refers to variables
// in computation ops
std
::
unordered_set
<
std
::
string
>
names
;
std
::
unordered_map
<
OpHandleBase
*
,
ReferenceCountOpHandle
*>
compute_ref_cnt_map
;
auto
get_ref_cnts_from_compute_op
=
[
&
](
OpHandleBase
*
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
std
::
vector
<
std
::
string
>
var_names_in_op
;
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
if
(
compute_op
==
nullptr
||
!
platform
::
is_gpu_place
(
compute_op
->
GetPlace
()))
return
var_names_in_op
;
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
compute_op
->
GetPlace
());
for
(
VarHandleBase
*
var_handle_base
:
vars
)
{
auto
*
var_handle
=
dynamic_cast
<
VarHandle
*>
(
var_handle_base
);
if
(
var_handle
==
nullptr
||
!
var_handle
->
Node
()
->
IsVar
())
continue
;
if
(
!
platform
::
is_gpu_place
(
var_handle
->
place_
)
||
boost
::
get
<
platform
::
CUDAPlace
>
(
var_handle
->
place_
)
!=
place
)
continue
;
auto
&
ref_cnts
=
Get
<
std
::
vector
<
ReferenceCountMap
>>
(
kGlobalReferenceCount
);
auto
&
last_live_ops_of_vars
=
Get
<
std
::
vector
<
LastLiveOpsOfVars
>>
(
kLastLiveOpsOfVars
);
PADDLE_ENFORCE
(
last_live_ops_of_vars
.
empty
()
&&
ref_cnts
.
empty
(),
"Last Live Ops and Reference Counts of vars should be "
"initialized at here."
);
VarDesc
*
var_desc
=
var_handle
->
Node
()
->
Var
();
auto
var_name
=
var_handle
->
Node
()
->
Name
();
const
auto
&
vars
=
graph
->
Get
<
GraphVars
>
(
kGraphVars
);
// This is weird but there is really some variables without var_desc
// in computation_op
if
(
var_desc
==
nullptr
)
{
var_desc
=
compute_op
->
Node
()
->
Op
()
->
Block
()
->
FindVar
(
var_name
);
if
(
var_desc
==
nullptr
)
continue
;
last_live_ops_of_vars
.
resize
(
vars
.
size
());
ref_cnts
.
resize
(
vars
.
size
());
ShrinkDepsOpFunctor
shrink_func
(
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph
));
for
(
size_t
i
=
0
;
i
<
vars
.
size
();
++
i
)
{
for
(
auto
&
name_var_pair
:
vars
[
i
])
{
// Whether this variable can be reused or deleted? If not, we do not
// compute reference counts and dependencies.
VarDesc
*
var_desc
=
TryGetLatestVarDesc
(
name_var_pair
.
second
);
if
(
var_desc
==
nullptr
||
var_desc
->
Persistable
())
{
continue
;
}
if
(
var_desc
->
Persistable
())
continue
;
auto
var_type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
var_type
!=
proto
::
VarType
::
LOD_TENSOR
&&
var_type
!=
proto
::
VarType
::
SELECTED_ROWS
)
{
var_type
!=
proto
::
VarType
::
SELECTED_ROWS
&&
var_type
!=
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
// Var type cannot be deleted
continue
;
}
// compute op only runs in one device
if
(
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
else
(
*
ref_cnts
[
place
.
device
])[
var_name
]
=
1
;
bool
ok
;
auto
result
=
ExtractComputationOpFromLastLivedVar
(
name_var_pair
.
second
.
back
(),
i
,
shrink_func
,
&
ok
);
names
.
insert
(
var_name
);
var_names_in_op
.
push_back
(
var_name
);
}
return
var_names_in_op
;
};
auto
update_ref_cnts_from_non_compute_op
=
[
&
](
OpHandleBase
*
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
if
(
dynamic_cast
<
ComputationOpHandle
*>
(
op
)
!=
nullptr
)
return
;
for
(
VarHandleBase
*
var_handle_base
:
vars
)
{
auto
*
var_handle
=
dynamic_cast
<
VarHandle
*>
(
var_handle_base
);
if
(
var_handle
==
nullptr
||
!
var_handle
->
Node
()
->
IsVar
())
continue
;
auto
var_name
=
var_handle
->
Node
()
->
Name
();
auto
var_place
=
var_handle
->
place_
;
if
(
!
platform
::
is_gpu_place
(
var_place
))
continue
;
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
var_place
);
if
(
names
.
count
(
var_name
)
==
0
)
continue
;
if
(
ref_cnts
.
count
(
place
.
device
)
&&
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
{
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
auto
*
next_compute_op
=
FindNextComputationOpHandle
(
var_handle
);
if
(
next_compute_op
!=
nullptr
)
{
if
(
compute_ref_cnt_map
.
count
(
next_compute_op
))
{
compute_ref_cnt_map
[
next_compute_op
]
->
AddVar
(
var_name
);
VLOG
(
5
)
<<
"Add reference count of "
<<
var_name
<<
" to Operator "
<<
next_compute_op
->
Name
();
}
else
{
// Create new reference_count_op_handle
ir
::
Node
*
ref_cnt_node
=
graph
->
CreateEmptyNode
(
"reference_count"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
next_compute_op
->
GetScope
(),
place
,
{
var_name
},
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
AddDependencyBetween
(
next_compute_op
,
ref_cnt_handle
,
graph
.
get
());
compute_ref_cnt_map
[
next_compute_op
]
=
ref_cnt_handle
;
}
}
if
(
ok
)
{
auto
&
var_name
=
name_var_pair
.
first
;
PADDLE_ENFORCE
(
!
result
.
empty
(),
"Last living ops of %s cannot be empty"
,
var_name
);
ref_cnts
[
i
].
emplace
(
var_name
,
result
.
size
());
last_live_ops_of_vars
[
i
].
emplace
(
var_name
,
std
::
move
(
result
));
}
}
};
auto
all_ops
=
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph
);
for
(
auto
&
op
:
all_ops
)
{
auto
in_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Inputs
());
auto
out_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Outputs
());
if
(
in_var_names
.
empty
()
&&
out_var_names
.
empty
())
continue
;
in_var_names
.
insert
(
in_var_names
.
end
(),
out_var_names
.
begin
(),
out_var_names
.
end
());
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
compute_op
->
GetPlace
());
ir
::
Node
*
ref_cnt_node
=
graph
->
CreateEmptyNode
(
"reference_count"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
compute_op
->
GetScope
(),
place
,
in_var_names
,
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
AddDependencyBetween
(
compute_op
,
ref_cnt_handle
,
graph
.
get
());
compute_ref_cnt_map
[
compute_op
]
=
ref_cnt_handle
;
}
for
(
auto
&
op
:
all_ops
)
{
update_ref_cnts_from_non_compute_op
(
op
,
op
->
Inputs
());
update_ref_cnts_from_non_compute_op
(
op
,
op
->
Outputs
());
}
std
::
vector
<
OpHandleBase
*>
new_all_ops
;
new_all_ops
.
reserve
(
compute_ref_cnt_map
.
size
()
+
all_ops
.
size
());
for
(
auto
&
op
:
all_ops
)
{
new_all_ops
.
emplace_back
(
std
::
move
(
op
));
auto
it
=
compute_ref_cnt_map
.
find
(
new_all_ops
.
back
());
if
(
it
!=
compute_ref_cnt_map
.
end
())
{
// Add LeafNode to ReferenceCountOpHandle
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dummy_leaf
);
it
->
second
->
AddOutput
(
dummy_leaf
);
new_all_ops
.
emplace_back
(
std
::
move
(
it
->
second
));
}
}
all_ops
.
swap
(
new_all_ops
);
return
graph
;
}
...
...
@@ -205,5 +258,4 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
REGISTER_PASS
(
reference_count_pass
,
paddle
::
framework
::
details
::
ReferenceCountPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGlobalReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kCurReferenceCount
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGarbageCollector
);
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLastLiveOpsOfVars
);
paddle/fluid/framework/details/reference_count_pass.h
浏览文件 @
4ecdb6f4
...
...
@@ -14,7 +14,6 @@
#pragma once
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
...
...
@@ -22,10 +21,6 @@ namespace paddle {
namespace
framework
{
namespace
details
{
constexpr
char
kGlobalReferenceCount
[]
=
"reference_count"
;
constexpr
char
kCurReferenceCount
[]
=
"current_reference_count"
;
constexpr
char
kGarbageCollector
[]
=
"garbage_collector"
;
class
ReferenceCountPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
...
...
paddle/fluid/framework/details/reference_count_pass_helper.cc
0 → 100644
浏览文件 @
4ecdb6f4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/reference_count_pass_helper.h
0 → 100644
浏览文件 @
4ecdb6f4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <atomic>
#include <map>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
ComputationOpHandle
;
using
ReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
size_t
>
;
using
AtomicReferenceCountMap
=
std
::
unordered_map
<
std
::
string
,
std
::
atomic
<
size_t
>>
;
using
GarbageCollectorMap
=
std
::
map
<
platform
::
Place
,
std
::
unique_ptr
<
GarbageCollector
>>
;
const
char
kGlobalReferenceCount
[]
=
"global_reference_count"
;
const
char
kRuntimeReferenceCount
[]
=
"runtime_reference_count"
;
const
char
kGarbageCollector
[]
=
"garbage_collector"
;
const
char
kAllPlaces
[]
=
"all_places"
;
using
LastLiveOpsOfVars
=
std
::
unordered_map
<
std
::
string
,
std
::
unordered_set
<
ComputationOpHandle
*>>
;
const
char
kLastLiveOpsOfVars
[]
=
"last_live_ops_of_var"
;
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc
浏览文件 @
4ecdb6f4
...
...
@@ -18,9 +18,6 @@
#include <vector>
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/profiler.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_op_handle.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -69,27 +66,12 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
platform
::
RecordEvent
e
(
"ScopeBufferedSSAGraphExecutorAfterRun"
,
nullptr
);
drop_scope_counter_
+=
1
;
#ifdef PADDLE_WITH_CUDA
const
std
::
string
gc_name
=
"garbage_collector"
;
DeviceGarbageCollectorMap
*
gc
=
Graph
().
Has
(
gc_name
)
?
&
(
Graph
().
Get
<
DeviceGarbageCollectorMap
>
(
gc_name
))
:
nullptr
;
#endif
if
(
!
fetch_tensors
.
empty
()
||
drop_scope_counter_
==
strategy_
.
num_iteration_per_drop_scope_
)
{
drop_scope_counter_
=
0
;
// Wait All computational streams
for
(
auto
p
:
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
#ifdef PADDLE_WITH_CUDA
if
(
gc
!=
nullptr
&&
platform
::
is_gpu_place
(
p
))
{
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
);
auto
&
gc_at_place
=
gc
->
at
(
gpu_place
.
device
);
gc_at_place
->
Wait
();
gc_at_place
->
Reset
();
}
#endif
}
for
(
auto
&
scope
:
local_scopes_
)
{
auto
&
local_scope
=
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
4ecdb6f4
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/executor.h"
#include <deque>
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
...
...
@@ -41,11 +42,43 @@ namespace {
int
kProgramId
=
-
1
;
}
// namespace
static
std
::
unordered_map
<
std
::
string
,
size_t
>
GetNonPersistableReferenceCounts
(
const
BlockDesc
&
block
,
const
std
::
vector
<
std
::
string
>&
skip_var_list
)
{
std
::
unordered_map
<
std
::
string
,
size_t
>
ref_cnts
;
std
::
unordered_set
<
std
::
string
>
skip_vars
(
skip_var_list
.
begin
(),
skip_var_list
.
end
());
auto
update_ref_cnts
=
[
&
](
OpDesc
*
op_desc
,
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
if
(
skip_vars
.
count
(
name
))
continue
;
auto
*
var_desc
=
block
.
FindVar
(
name
);
if
(
var_desc
==
nullptr
||
var_desc
->
Persistable
())
continue
;
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
&&
type
!=
proto
::
VarType
::
SELECTED_ROWS
&&
type
!=
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
{
continue
;
}
++
ref_cnts
[
name
];
}
}
};
for
(
auto
op_desc
:
block
.
AllOps
())
{
update_ref_cnts
(
op_desc
,
op_desc
->
Inputs
());
update_ref_cnts
(
op_desc
,
op_desc
->
Outputs
());
}
return
ref_cnts
;
}
ExecutorPrepareContext
::
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
)
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
)
:
prog_
(
prog
),
block_id_
(
block_id
)
{
if
(
GetEagerDeletionThreshold
()
>=
0
)
{
ref_cnts_
=
GetNonPersistableReferenceCount
<
int
>
(
prog_
,
block_id_
);
global_ref_cnts_
=
GetNonPersistableReferenceCounts
(
prog
.
Block
(
block_id
),
skip_ref_cnt_vars
);
}
}
...
...
@@ -53,28 +86,40 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
VLOG
(
5
)
<<
"destroy ExecutorPrepareContext"
;
}
template
<
typename
RefCntMap
>
static
void
DeleteUnusedTensors
(
const
Scope
&
scope
,
const
OperatorBase
*
op
,
GarbageCollector
<
Tensor
>*
gc
,
RefCntMap
*
ref_cnts
)
{
std
::
unordered_set
<
Tensor
*>
erase_tensors
;
static
void
DeleteUnusedTensors
(
const
Scope
&
scope
,
const
OperatorBase
*
op
,
GarbageCollector
*
gc
,
std
::
unordered_map
<
std
::
string
,
size_t
>*
ref_cnts
)
{
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
garbages
;
auto
handler
=
[
&
](
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
auto
it
=
ref_cnts
->
find
(
name
);
if
(
it
==
ref_cnts
->
end
())
continue
;
if
((
it
->
second
)
--
==
1
)
{
auto
*
var
=
scope
.
FindVar
(
name
);
if
(
var
!=
nullptr
)
{
VLOG
(
10
)
<<
"Erase tensor
\'
"
<<
name
<<
"
\'
"
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
erase_tensors
.
insert
(
var
->
GetMutable
<
LoDTensor
>
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
erase_tensors
.
insert
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
());
}
if
(
--
(
it
->
second
)
!=
0
)
{
continue
;
}
auto
*
var
=
scope
.
FindVar
(
name
);
if
(
var
!=
nullptr
)
{
continue
;
}
VLOG
(
2
)
<<
"Erase variable "
<<
name
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
garbages
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
()
->
MoveMemoryHolder
());
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
garbages
.
emplace_back
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
()
->
MoveMemoryHolder
());
}
else
if
(
var
->
IsType
<
LoDTensorArray
>
())
{
auto
*
lod_tensor_arr
=
var
->
GetMutable
<
LoDTensorArray
>
();
for
(
auto
&
t
:
*
lod_tensor_arr
)
{
garbages
.
emplace_back
(
t
.
MoveMemoryHolder
());
}
}
else
{
PADDLE_THROW
(
"Type %s of %s is not supported eager deletion"
,
var
->
Type
().
name
(),
name
);
}
}
}
...
...
@@ -83,8 +128,8 @@ static void DeleteUnusedTensors(const Scope& scope, const OperatorBase* op,
handler
(
op
->
Inputs
());
handler
(
op
->
Outputs
());
if
(
!
erase_tensor
s
.
empty
())
{
gc
->
Add
(
erase_tensors
);
if
(
!
garbage
s
.
empty
())
{
gc
->
Add
(
std
::
move
(
garbages
)
);
}
}
...
...
@@ -325,9 +370,10 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
std
::
unique_ptr
<
ExecutorPrepareContext
>
Executor
::
Prepare
(
const
ProgramDesc
&
program
,
int
block_id
)
{
const
ProgramDesc
&
program
,
int
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
)
{
std
::
unique_ptr
<
ExecutorPrepareContext
>
ctx
(
new
ExecutorPrepareContext
(
program
,
block_id
));
new
ExecutorPrepareContext
(
program
,
block_id
,
skip_ref_cnt_vars
));
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
block_id
),
program
.
Size
());
auto
&
block
=
program
.
Block
(
block_id
);
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
...
...
@@ -338,16 +384,28 @@ std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
}
std
::
vector
<
std
::
shared_ptr
<
ExecutorPrepareContext
>>
Executor
::
Prepare
(
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
)
{
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>&
skip_ref_cnt_vars
)
{
PADDLE_ENFORCE
(
skip_ref_cnt_vars
.
empty
()
||
skip_ref_cnt_vars
.
size
()
==
block_ids
.
size
(),
"skip_ref_cnt_vars should be either empty or equals to block number %d"
,
block_ids
.
size
());
std
::
vector
<
std
::
shared_ptr
<
ExecutorPrepareContext
>>
result
;
size_t
idx
=
0
;
for
(
auto
&
bid
:
block_ids
)
{
auto
*
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
);
ExecutorPrepareContext
*
ctx
;
if
(
skip_ref_cnt_vars
.
empty
())
{
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
);
}
else
{
ctx
=
new
ExecutorPrepareContext
(
program
,
bid
,
skip_ref_cnt_vars
[
idx
]);
}
PADDLE_ENFORCE_LT
(
static_cast
<
size_t
>
(
bid
),
program
.
Size
());
auto
&
block
=
program
.
Block
(
bid
);
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
ctx
->
ops_
.
push_back
(
OpRegistry
::
CreateOp
(
*
op_desc
));
}
result
.
push_back
(
std
::
shared_ptr
<
ExecutorPrepareContext
>
(
ctx
));
++
idx
;
}
return
result
;
}
...
...
@@ -365,22 +423,23 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
int64_t
max_memory_size
=
GetEagerDeletionThreshold
();
std
::
unique_ptr
<
GarbageCollector
<
Tensor
>>
gc
;
// WhileOp would set keep_kids to true,
// because WhileGradOp needs the scopes created in WhileOp.
// Perhaps, we should not perform eager deletion in WhileOp
// The scopes and variables created by WhileOp would be deleted
// in WhileGradOp.
std
::
unique_ptr
<
GarbageCollector
>
gc
;
// skip while_op and while_grad_op temporarily
if
(
max_memory_size
>=
0
&&
!
keep_kids
)
{
ctx
->
ResetReferenceCount
();
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place_
))
{
gc
.
reset
(
new
DefaultStreamGarbageCollector
<
Tensor
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
max_memory_size
));
}
else
{
if
(
IsFastEagerDeletionModeEnabled
())
{
gc
.
reset
(
new
UnsafeFastGPUGarbageCollector
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
max_memory_size
));
}
else
{
gc
.
reset
(
new
DefaultStreamGarbageCollector
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
max_memory_size
));
}
}
else
if
(
platform
::
is_cpu_place
(
place_
))
{
#endif
gc
.
reset
(
new
CPUGarbageCollector
<
Tensor
>
(
boost
::
get
<
platform
::
CPUPlace
>
(
place_
),
max_memory_size
));
gc
.
reset
(
new
CPUGarbageCollector
(
boost
::
get
<
platform
::
CPUPlace
>
(
place_
),
max_memory_size
));
#ifdef PADDLE_WITH_CUDA
}
#endif
...
...
@@ -389,17 +448,13 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
for
(
auto
&
op
:
ctx
->
ops_
)
{
op
->
Run
(
*
local_scope
,
place_
);
if
(
gc
!=
nullptr
)
{
if
(
gc
)
{
DeleteUnusedTensors
(
*
local_scope
,
op
.
get
(),
gc
.
get
(),
&
(
ctx
->
cur
_ref_cnts_
));
&
(
ctx
->
runtime
_ref_cnts_
));
}
}
if
(
gc
!=
nullptr
)
{
gc
->
Wait
();
}
else
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
}
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
)
->
Wait
();
if
(
local_scope
!=
scope
)
{
scope
->
DeleteScope
(
local_scope
);
...
...
paddle/fluid/framework/executor.h
浏览文件 @
4ecdb6f4
...
...
@@ -27,52 +27,21 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
template
<
typename
T
>
std
::
unordered_map
<
std
::
string
,
T
>
GetNonPersistableReferenceCount
(
const
ProgramDesc
&
prog
,
size_t
block_id
)
{
auto
&
block
=
prog
.
Block
(
block_id
);
std
::
unordered_map
<
std
::
string
,
T
>
ref_cnts
;
auto
update_ref_cnts
=
[
&
](
OpDesc
*
op_desc
,
const
VariableNameMap
&
name_map
)
{
for
(
auto
&
name_pair
:
name_map
)
{
for
(
auto
&
name
:
name_pair
.
second
)
{
auto
*
var_desc
=
block
.
FindVar
(
name
);
if
(
var_desc
==
nullptr
||
var_desc
->
Persistable
())
continue
;
auto
type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
type
!=
proto
::
VarType
::
LOD_TENSOR
&&
type
!=
proto
::
VarType
::
SELECTED_ROWS
)
{
continue
;
}
auto
it
=
ref_cnts
.
find
(
name
);
if
(
it
!=
ref_cnts
.
end
())
{
++
it
->
second
;
}
else
{
ref_cnts
[
name
]
=
1
;
}
}
}
};
for
(
auto
op_desc
:
block
.
AllOps
())
{
update_ref_cnts
(
op_desc
,
op_desc
->
Inputs
());
update_ref_cnts
(
op_desc
,
op_desc
->
Outputs
());
}
return
ref_cnts
;
}
struct
ExecutorPrepareContext
{
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
);
ExecutorPrepareContext
(
const
framework
::
ProgramDesc
&
prog
,
size_t
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
string
>
());
~
ExecutorPrepareContext
();
void
ResetReferenceCount
()
{
cur_ref_cnts_
=
ref_cnts_
;
}
void
ResetReferenceCount
()
{
runtime_ref_cnts_
=
global_
ref_cnts_
;
}
const
framework
::
ProgramDesc
&
prog_
;
size_t
block_id_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
std
::
unordered_map
<
std
::
string
,
int
>
ref_cnts_
;
std
::
unordered_map
<
std
::
string
,
int
>
cur
_ref_cnts_
;
std
::
unordered_map
<
std
::
string
,
size_t
>
global_
ref_cnts_
;
std
::
unordered_map
<
std
::
string
,
size_t
>
runtime
_ref_cnts_
;
};
class
Executor
{
...
...
@@ -108,10 +77,14 @@ class Executor {
const
std
::
string
&
fetch_holder_name
=
"fetch"
);
static
std
::
unique_ptr
<
ExecutorPrepareContext
>
Prepare
(
const
ProgramDesc
&
program
,
int
block_id
);
const
ProgramDesc
&
program
,
int
block_id
,
const
std
::
vector
<
std
::
string
>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
string
>
());
static
std
::
vector
<
std
::
shared_ptr
<
ExecutorPrepareContext
>>
Prepare
(
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
);
const
ProgramDesc
&
program
,
const
std
::
vector
<
int
>&
block_ids
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>&
skip_ref_cnt_vars
=
std
::
vector
<
std
::
vector
<
std
::
string
>>
());
void
CreateVariables
(
const
ProgramDesc
&
pdesc
,
Scope
*
scope
,
int
block_id
);
...
...
paddle/fluid/framework/garbage_collector.cc
0 → 100644
浏览文件 @
4ecdb6f4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
#include "paddle/fluid/framework/garbage_collector.h"
namespace
paddle
{
namespace
framework
{
GarbageCollector
::
GarbageCollector
(
const
platform
::
Place
&
place
,
size_t
max_memory_size
)
:
max_memory_size_
((
std
::
max
)(
max_memory_size
,
static_cast
<
size_t
>
(
1
)))
{
garbages_
.
reset
(
new
GarbageQueue
());
dev_ctx_
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
}
CPUGarbageCollector
::
CPUGarbageCollector
(
const
platform
::
CPUPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
(
place
,
max_memory_size
)
{}
void
CPUGarbageCollector
::
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
callback
();
}
#ifdef PADDLE_WITH_CUDA
UnsafeFastGPUGarbageCollector
::
UnsafeFastGPUGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
(
place
,
max_memory_size
)
{}
void
UnsafeFastGPUGarbageCollector
::
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
callback
();
}
DefaultStreamGarbageCollector
::
DefaultStreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
(
place
,
max_memory_size
)
{}
void
DefaultStreamGarbageCollector
::
Wait
()
const
{
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
WaitStreamCallback
();
}
void
DefaultStreamGarbageCollector
::
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
AddStreamCallback
(
callback
);
}
StreamGarbageCollector
::
StreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
(
place
,
max_memory_size
)
{
platform
::
CUDADeviceGuard
guard
(
place
.
device
);
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
callback_manager_
.
reset
(
new
platform
::
StreamCallbackManager
(
stream_
));
}
StreamGarbageCollector
::~
StreamGarbageCollector
()
{
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
this
->
dev_ctx_
->
GetPlace
());
platform
::
CUDADeviceGuard
guard
(
place
.
device
);
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
}
cudaStream_t
StreamGarbageCollector
::
stream
()
const
{
return
stream_
;
}
void
StreamGarbageCollector
::
Wait
()
const
{
callback_manager_
->
Wait
();
}
void
StreamGarbageCollector
::
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
callback_manager_
->
AddCallback
(
callback
);
}
#endif
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/garbage_collector.h
浏览文件 @
4ecdb6f4
...
...
@@ -14,7 +14,6 @@
#pragma once
#include <algorithm>
#include <deque>
#include <functional>
#include <memory>
...
...
@@ -24,134 +23,74 @@
namespace
paddle
{
namespace
framework
{
// T should have memory_size() and clear() method
template
<
typename
T
>
class
GarbageCollector
{
public:
GarbageCollector
(
const
platform
::
Place
&
place
,
size_t
max_memory_size
)
:
max_memory_size_
((
std
::
max
)(
max_memory_size
,
static_cast
<
size_t
>
(
1
)))
{
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
dev_ctx_
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
}
using
GarbageQueue
=
std
::
deque
<
std
::
shared_ptr
<
memory
::
Allocation
>>
;
virtual
~
GarbageCollector
()
{}
GarbageCollector
(
const
platform
::
Place
&
place
,
size_t
max_memory_size
);
void
Reset
()
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
cur_memory_size_
=
0
;
}
virtual
~
GarbageCollector
()
=
default
;
virtual
void
Wait
()
const
{}
template
<
typename
Container
>
void
Add
(
const
Container
&
objs
)
{
Add
(
objs
,
[]()
{});
}
void
Add
(
Container
&&
objs
);
template
<
typename
Container
,
typename
Callback
>
void
Add
(
const
Container
&
objs
,
Callback
&&
callback
)
{
std
::
shared_ptr
<
std
::
deque
<
T
*>>
clear_deque
;
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
for
(
auto
*
obj
:
objs
)
{
garbages_
->
push_back
(
obj
);
cur_memory_size_
+=
obj
->
memory_size
();
}
if
(
cur_memory_size_
>=
max_memory_size_
)
{
cur_memory_size_
=
0
;
clear_deque
=
garbages_
;
garbages_
.
reset
(
new
std
::
deque
<
T
*>
());
}
}
if
(
clear_deque
!=
nullptr
)
{
callback
();
ClearCallback
([
=
]()
{
for
(
auto
*
obj
:
*
clear_deque
)
obj
->
clear
();
});
}
}
virtual
void
Wait
()
const
{}
void
Add
(
Container
&&
objs
,
Callback
&&
callback
);
protected:
virtual
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
=
0
;
platform
::
DeviceContext
*
dev_ctx_
;
std
::
shared_ptr
<
std
::
deque
<
T
*>
>
garbages_
;
std
::
unique_ptr
<
GarbageQueue
>
garbages_
;
mutable
std
::
mutex
mutex_
;
const
size_t
max_memory_size_
;
size_t
cur_memory_size_
=
0
;
size_t
cur_memory_size_
{
0
}
;
};
template
<
typename
T
>
class
CPUGarbageCollector
:
public
GarbageCollector
<
T
>
{
class
CPUGarbageCollector
:
public
GarbageCollector
{
public:
CPUGarbageCollector
(
const
platform
::
CPUPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{}
CPUGarbageCollector
(
const
platform
::
CPUPlace
&
place
,
size_t
max_memory_size
);
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
callback
();
}
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
;
};
#ifdef PADDLE_WITH_CUDA
template
<
typename
T
>
class
DefaultStreamGarbageCollector
:
public
GarbageCollector
<
T
>
{
class
UnsafeFastGPUGarbageCollector
:
public
GarbageCollector
{
public:
DefaultStreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{}
UnsafeFastGPUGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
);
cudaStream_t
stream
()
const
{
return
static_cast
<
const
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
stream
();
}
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
;
};
void
Wait
()
const
override
{
this
->
dev_ctx_
->
Wait
();
static_cast
<
const
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
WaitStreamCallback
();
}
class
DefaultStreamGarbageCollector
:
public
GarbageCollector
{
public:
DefaultStreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
);
void
Wait
()
const
override
;
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctx_
)
->
AddStreamCallback
(
callback
);
}
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
;
};
template
<
typename
T
>
class
StreamGarbageCollector
:
public
GarbageCollector
<
T
>
{
class
StreamGarbageCollector
:
public
GarbageCollector
{
public:
StreamGarbageCollector
(
const
platform
::
CUDAPlace
&
place
,
size_t
max_memory_size
)
:
GarbageCollector
<
T
>
(
place
,
max_memory_size
)
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaStreamCreate
(
&
stream_
));
callback_manager_
.
reset
(
new
platform
::
StreamCallbackManager
(
stream_
));
}
size_t
max_memory_size
);
~
StreamGarbageCollector
()
{
auto
place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
this
->
dev_ctx_
->
GetPlace
());
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
}
~
StreamGarbageCollector
();
void
Wait
()
const
override
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
std
::
lock_guard
<
std
::
mutex
>
guard
(
this
->
mutex_
);
callback_manager_
->
Wait
();
}
void
Wait
()
const
override
;
cudaStream_t
stream
()
const
{
return
stream_
;
}
cudaStream_t
stream
()
const
;
protected:
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
this
->
mutex_
);
callback_manager_
->
AddCallback
(
callback
);
}
void
ClearCallback
(
const
std
::
function
<
void
()
>
&
callback
)
override
;
private:
cudaStream_t
stream_
;
...
...
@@ -159,5 +98,33 @@ class StreamGarbageCollector : public GarbageCollector<T> {
};
#endif
template
<
typename
Container
>
void
GarbageCollector
::
Add
(
Container
&&
objs
)
{
Add
(
std
::
forward
<
Container
>
(
objs
),
[]()
{});
}
template
<
typename
Container
,
typename
Callback
>
void
GarbageCollector
::
Add
(
Container
&&
objs
,
Callback
&&
callback
)
{
GarbageQueue
*
garbage_queue
=
nullptr
;
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mutex_
);
for
(
auto
&
obj
:
objs
)
{
if
(
!
obj
)
continue
;
cur_memory_size_
+=
obj
->
size
();
garbages_
->
push_back
(
std
::
move
(
obj
));
}
if
(
cur_memory_size_
>=
max_memory_size_
)
{
cur_memory_size_
=
0
;
garbage_queue
=
garbages_
.
release
();
garbages_
.
reset
(
new
GarbageQueue
());
}
}
if
(
garbage_queue
)
{
callback
();
ClearCallback
([
garbage_queue
]()
{
delete
garbage_queue
;
});
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph.h
浏览文件 @
4ecdb6f4
...
...
@@ -73,14 +73,21 @@ class Graph {
}
bool
Has
(
const
std
::
string
&
attr_name
)
const
{
return
attrs_
.
find
(
attr_name
)
!=
attrs_
.
end
()
;
return
attrs_
.
count
(
attr_name
)
>
0
;
}
template
<
typename
AttrType
>
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
PADDLE_ENFORCE
(
Has
(
attr_name
),
"%s attr not registered for graph."
,
attr_name
);
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
try
{
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
}
catch
(
boost
::
bad_any_cast
&
)
{
PADDLE_THROW
(
"Invalid attribute type of %s error, expected: %s, actual: %s"
,
attr_name
,
typeid
(
AttrType
*
).
name
(),
attrs_
.
at
(
attr_name
).
type
().
name
());
}
}
template
<
typename
AttrType
>
...
...
paddle/fluid/framework/ir/pass.h
浏览文件 @
4ecdb6f4
...
...
@@ -51,11 +51,18 @@ class Pass {
AttrType
&
Get
(
const
std
::
string
&
attr_name
)
const
{
PADDLE_ENFORCE
(
attrs_
.
find
(
attr_name
)
!=
attrs_
.
end
(),
"%s attr not registered for pass."
,
attr_name
);
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
try
{
return
*
boost
::
any_cast
<
AttrType
*>
(
attrs_
.
at
(
attr_name
));
}
catch
(
boost
::
bad_any_cast
&
)
{
PADDLE_THROW
(
"Invalid attribute type of %s error, expected: %s, actual: %s"
,
attr_name
,
typeid
(
AttrType
*
).
name
(),
attrs_
.
at
(
attr_name
).
type
().
name
());
}
}
bool
Has
(
const
std
::
string
&
attr_name
)
const
{
return
attrs_
.
find
(
attr_name
)
!=
attrs_
.
end
()
;
return
attrs_
.
count
(
attr_name
)
>
0
;
}
void
Erase
(
const
std
::
string
&
attr_name
)
{
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
4ecdb6f4
...
...
@@ -879,6 +879,8 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
t
=
&
(
var
->
Get
<
SelectedRows
>
().
value
());
}
if
(
t
!=
nullptr
)
{
PADDLE_ENFORCE
(
t
->
IsInitialized
(),
"Input %s is not initialized: %s"
,
ipt_name
,
DebugString
());
int
tmp
=
static_cast
<
int
>
(
t
->
type
());
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
4ecdb6f4
...
...
@@ -26,6 +26,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -72,6 +73,26 @@ class ParallelExecutorPrivate {
}
}
}
std
::
unique_ptr
<
ir
::
Graph
>
PrepareGCAndRefCnts
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
,
size_t
max_memory_size
);
inline
bool
HasGarbageCollectors
()
const
{
return
!
gcs_
.
empty
();
}
void
ResetRuntimeReferenceCount
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
)
{
for
(
size_t
i
=
0
;
i
<
runtime_ref_cnts_
.
size
();
++
i
)
{
for
(
auto
&
pair
:
global_ref_cnts_
[
i
])
{
runtime_ref_cnts_
[
i
][
pair
.
first
]
=
pair
.
second
;
}
for
(
auto
&
fetch_name
:
fetch_tensors
)
{
runtime_ref_cnts_
[
i
].
erase
(
fetch_name
);
}
runtime_ref_cnts_
[
i
].
erase
(
fetched_var_name
);
}
}
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
Scope
*>
local_scopes_
;
Scope
*
global_scope_
;
// not owned
...
...
@@ -83,8 +104,76 @@ class ParallelExecutorPrivate {
bool
own_local_scope_
;
bool
use_cuda_
;
bool
use_all_reduce_
;
// global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
// then keeps unchanged
// Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
std
::
vector
<
details
::
ReferenceCountMap
>
global_ref_cnts_
;
std
::
vector
<
details
::
AtomicReferenceCountMap
>
runtime_ref_cnts_
;
details
::
GarbageCollectorMap
gcs_
;
};
std
::
unique_ptr
<
ir
::
Graph
>
ParallelExecutorPrivate
::
PrepareGCAndRefCnts
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
,
size_t
max_memory_size
)
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
&
place
=
places_
[
i
];
if
(
gcs_
.
count
(
place
)
>
0
)
{
continue
;
}
std
::
unique_ptr
<
GarbageCollector
>
gc
;
#ifdef PADDLE_WITH_CUDA
if
(
platform
::
is_gpu_place
(
place
))
{
if
(
IsFastEagerDeletionModeEnabled
())
{
gc
.
reset
(
new
UnsafeFastGPUGarbageCollector
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
max_memory_size
));
}
else
{
gc
.
reset
(
new
StreamGarbageCollector
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
max_memory_size
));
}
VLOG
(
10
)
<<
"Created "
<<
i
<<
"-th GarbageCollector at "
<<
place
;
}
else
{
#endif
if
(
platform
::
is_cpu_place
(
place
))
{
gc
.
reset
(
new
CPUGarbageCollector
(
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
max_memory_size
));
VLOG
(
10
)
<<
"Created GarbageCollector at "
<<
place
;
}
else
{
PADDLE_THROW
(
"Unsupported place for garbage collection"
);
}
#ifdef PADDLE_WITH_CUDA
}
#endif
gcs_
.
emplace
(
place
,
std
::
move
(
gc
));
}
if
(
!
gcs_
.
empty
())
{
std
::
vector
<
details
::
LastLiveOpsOfVars
>
last_live_ops_of_vars
;
auto
ref_cnt_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"reference_count_pass"
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGlobalReferenceCount
,
&
global_ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kLastLiveOpsOfVars
,
&
last_live_ops_of_vars
);
graph
=
ref_cnt_pass
->
Apply
(
std
::
move
(
graph
));
VLOG
(
10
)
<<
"ReferenceCountPass Applied"
;
auto
eager_deletion_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"eager_deletion_pass"
);
eager_deletion_pass
->
SetNotOwned
(
details
::
kRuntimeReferenceCount
,
&
runtime_ref_cnts_
);
eager_deletion_pass
->
SetNotOwned
(
details
::
kGarbageCollector
,
&
gcs_
);
eager_deletion_pass
->
SetNotOwned
(
details
::
kLastLiveOpsOfVars
,
&
last_live_ops_of_vars
);
eager_deletion_pass
->
SetNotOwned
(
details
::
kAllPlaces
,
&
places_
);
graph
=
eager_deletion_pass
->
Apply
(
std
::
move
(
graph
));
VLOG
(
10
)
<<
"EagerDeletionPass Applied"
;
}
return
graph
;
}
std
::
vector
<
Scope
*>
&
ParallelExecutor
::
GetLocalScopes
()
{
return
member_
->
local_scopes_
;
}
...
...
@@ -151,36 +240,18 @@ ParallelExecutor::ParallelExecutor(
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
for
(
auto
&
place
:
member_
->
places_
)
{
if
(
!
platform
::
is_gpu_place
(
place
))
continue
;
auto
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
if
(
gcs_
[
gpu_place
.
device
]
==
nullptr
)
{
ref_cnts_
[
gpu_place
.
device
].
reset
(
new
details
::
ReferenceCountMap
());
cur_ref_cnts_
[
gpu_place
.
device
].
reset
(
new
details
::
AtomicReferenceCountMap
());
gcs_
[
gpu_place
.
device
].
reset
(
new
StreamGarbageCollector
<
Tensor
>
(
gpu_place
,
max_memory_size
));
}
}
if
(
!
gcs_
.
empty
())
{
auto
ref_cnt_pass
=
ir
::
PassRegistry
::
Instance
().
Get
(
"reference_count_pass"
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGlobalReferenceCount
,
&
ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kCurReferenceCount
,
&
cur_ref_cnts_
);
ref_cnt_pass
->
SetNotOwned
(
details
::
kGarbageCollector
,
&
gcs_
);
graph
=
ref_cnt_pass
->
Apply
(
std
::
move
(
graph
));
graph
->
SetNotOwned
(
"garbage_collector"
,
&
gcs_
);
}
}
#else
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
);
#endif
auto
max_memory_size
=
GetEagerDeletionThreshold
();
if
(
max_memory_size
>=
0
)
{
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graph
),
static_cast
<
size_t
>
(
max_memory_size
));
}
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
...
...
@@ -300,18 +371,9 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
#endif
platform
::
RecordBlock
b
(
0
);
#ifdef PADDLE_WITH_CUDA
if
(
!
gcs_
.
empty
())
{
ResetReferenceCount
();
for
(
auto
&
pair
:
cur_ref_cnts_
)
{
auto
&
name_map
=
*
(
pair
.
second
);
for
(
auto
&
fetch_name
:
fetch_tensors
)
{
name_map
.
erase
(
fetch_name
);
}
name_map
.
erase
(
fetched_var_name
);
}
if
(
member_
->
HasGarbageCollectors
())
{
member_
->
ResetRuntimeReferenceCount
(
fetch_tensors
,
fetched_var_name
);
}
#endif
auto
fetch_data
=
member_
->
executor_
->
Run
(
fetch_tensors
);
*
member_
->
global_scope_
->
Var
(
fetched_var_name
)
->
GetMutable
<
FeedFetchList
>
()
=
fetch_data
;
...
...
@@ -355,13 +417,11 @@ ParallelExecutor::~ParallelExecutor() {
for
(
auto
&
p
:
member_
->
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
}
// member_ must be destructed before gcs_ since the destructor of
// ReferenceCountOpHandle use raw pointers of gcs_ inside.
member_
.
reset
();
delete
member_
;
}
}
// namespace framework
}
// namespace paddle
#ifdef PADDLE_WITH_CUDA
USE_PASS
(
reference_count_pass
);
#endif
USE_PASS
(
eager_deletion_pass
);
paddle/fluid/framework/parallel_executor.h
浏览文件 @
4ecdb6f4
...
...
@@ -14,7 +14,6 @@ limitations under the License. */
#pragma once
#include <atomic>
#include <string>
#include <unordered_map>
#include <unordered_set>
...
...
@@ -29,10 +28,6 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/reference_count_pass.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -75,24 +70,7 @@ class ParallelExecutor {
private:
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
std
::
unique_ptr
<
ParallelExecutorPrivate
>
member_
;
#ifdef PADDLE_WITH_CUDA
// ref_cnts_ is only initialized when ParallelExecutor constructs, and then
// keeps unchanged
// Before each iteration, cur_ref_cnts_ is reset to ref_cnts_
details
::
DeviceReferenceCountMap
ref_cnts_
;
details
::
AtomicDeviceReferenceCountMap
cur_ref_cnts_
;
details
::
DeviceGarbageCollectorMap
gcs_
;
void
ResetReferenceCount
()
{
for
(
auto
&
pair1
:
ref_cnts_
)
{
for
(
auto
&
pair2
:
*
(
pair1
.
second
))
{
(
*
(
cur_ref_cnts_
[
pair1
.
first
]))[
pair2
.
first
]
=
pair2
.
second
;
}
}
}
#endif
ParallelExecutorPrivate
*
member_
;
};
}
// namespace framework
...
...
paddle/fluid/framework/scope.cc
浏览文件 @
4ecdb6f4
...
...
@@ -38,6 +38,10 @@ DEFINE_double(
"Memory size threshold (GB) when the garbage collector clear tensors."
"Disabled when this value is less than 0"
);
DEFINE_bool
(
fast_eager_deletion_mode
,
false
,
"Fast eager deletion mode. If enabled, memory would release "
"immediately without waiting GPU kernel ends."
);
// When in inference scenario, the scopes will not be written by two threads in
// a mean time, but a scope may be read by multiple threads concurrently, and
// the mutex will cause serious performance issue.
...
...
@@ -58,6 +62,8 @@ int64_t GetEagerDeletionThreshold() {
(
static_cast
<
int64_t
>
(
1
)
<<
30
));
}
bool
IsFastEagerDeletionModeEnabled
()
{
return
FLAGS_fast_eager_deletion_mode
;
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
...
...
paddle/fluid/framework/scope.h
浏览文件 @
4ecdb6f4
...
...
@@ -27,6 +27,7 @@ namespace paddle {
namespace
framework
{
int64_t
GetEagerDeletionThreshold
();
bool
IsFastEagerDeletionModeEnabled
();
class
Scope
;
...
...
paddle/fluid/framework/tensor.h
浏览文件 @
4ecdb6f4
...
...
@@ -159,6 +159,10 @@ class Tensor {
const
std
::
shared_ptr
<
memory
::
Allocation
>&
Holder
()
const
{
return
holder_
;
}
size_t
offset
()
const
{
return
offset_
;
}
std
::
shared_ptr
<
memory
::
Allocation
>
MoveMemoryHolder
()
{
return
std
::
move
(
holder_
);
}
private:
/*! holds the memory block if allocated. */
std
::
shared_ptr
<
memory
::
Allocation
>
holder_
;
...
...
paddle/fluid/operators/controlflow/while_op.cc
浏览文件 @
4ecdb6f4
...
...
@@ -32,6 +32,20 @@ static constexpr char kStepScopes[] = "StepScopes";
static
constexpr
char
kX
[]
=
"X"
;
static
constexpr
char
kXGRAD
[]
=
"X@GRAD"
;
static
constexpr
char
kOutputs
[]
=
"Out"
;
static
constexpr
char
kSkipEagerDeletionVars
[]
=
"skip_eager_deletion_vars"
;
namespace
{
// NOLINT
static
std
::
string
GetSkipEagerDeletionVarsDebugString
(
const
std
::
vector
<
std
::
string
>
&
vars
)
{
std
::
string
str
=
"Skip "
+
std
::
to_string
(
vars
.
size
())
+
" var(s) in eager deletion mode: "
;
for
(
auto
&
var
:
vars
)
{
str
.
append
(
var
);
str
.
push_back
(
' '
);
}
return
str
;
}
}
// NOLINT
class
WhileOp
:
public
framework
::
OperatorBase
{
public:
...
...
@@ -59,7 +73,10 @@ class WhileOp : public framework::OperatorBase {
"Condition of while op must in CPU memory."
);
bool
is_test
=
Attr
<
bool
>
(
"is_test"
);
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
());
auto
&
skip_vars
=
Attr
<
std
::
vector
<
std
::
string
>>
(
kSkipEagerDeletionVars
);
VLOG
(
2
)
<<
GetSkipEagerDeletionVarsDebugString
(
skip_vars
);
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
(),
skip_vars
);
while
(
cond
.
data
<
bool
>
()[
0
])
{
auto
&
current_scope
=
scope
.
NewScope
();
step_scopes
->
push_back
(
&
current_scope
);
...
...
@@ -96,6 +113,10 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
kSkipEagerDeletionVars
,
"Vars that would skip eager deletion."
"Users should not set this manually."
)
.
SetDefault
(
std
::
vector
<
std
::
string
>
());
AddComment
(
R"DOC(
)DOC"
);
}
...
...
@@ -119,7 +140,10 @@ class WhileGradOp : public framework::OperatorBase {
framework
::
Executor
executor
(
dev_place
);
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
kStepBlock
);
auto
*
program
=
block
->
Program
();
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
());
auto
&
skip_vars
=
Attr
<
std
::
vector
<
std
::
string
>>
(
kSkipEagerDeletionVars
);
VLOG
(
2
)
<<
GetSkipEagerDeletionVarsDebugString
(
skip_vars
);
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
(),
skip_vars
);
auto
*
step_scopes
=
scope
.
FindVar
(
Input
(
kStepScopes
))
->
GetMutable
<
StepScopeVar
>
();
...
...
@@ -341,6 +365,8 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
// while operator could be renamed.
while_grad
->
SetAttr
(
"original_output_grad"
,
output_grads_list
);
while_grad
->
SetAttr
(
kSkipEagerDeletionVars
,
std
::
vector
<
std
::
string
>
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
while_grad
);
}
};
...
...
paddle/fluid/operators/psroi_pool_op.cc
0 → 100644
浏览文件 @
4ecdb6f4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/psroi_pool_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
class
PSROIPoolOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), "
"the input of PSROIPoolOp. "
"The format of input tensor is NCHW. Where N is the batch size, "
"C is the number of input channels, "
"H is the height of the input feature map, and "
"W is the width."
);
AddInput
(
"ROIs"
,
"(LoDTensor), "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D LoDTensor of shape (num_rois, 4) "
"given as [(x1, y1, x2, y2), ...]. "
"where (x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates. "
"The roi batch index can be calculated from LoD."
);
AddOutput
(
"Out"
,
"(Tensor), "
"the output of PSROIPoolOp is a 4-D Tensor with shape "
"(num_rois, output_channels, pooled_h, pooled_w)."
);
AddAttr
<
int
>
(
"output_channels"
,
"(int), "
"the number of channels of the output feature map. "
"For a task of C classes of objects, output_channels should be "
"(C + 1) for classification only."
);
AddAttr
<
float
>
(
"spatial_scale"
,
"(float, default 1.0), "
"Multiplicative spatial scale factor "
"to translate ROI coords from their input scale "
"to the scale used when pooling."
)
.
SetDefault
(
1.0
);
AddAttr
<
int
>
(
"pooled_height"
,
"(int, default 1), "
"the pooled output height."
)
.
SetDefault
(
1
);
AddAttr
<
int
>
(
"pooled_width"
,
"(int, default 1), "
"the pooled output width."
)
.
SetDefault
(
1
);
AddComment
(
R"Doc(
**PSROIPool Operator**
Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
position-sensitive average pooling on regions of interest specified by input, takes as
input N position-sensitive score maps and a list of num_rois regions of interest.
PSROIPooling for R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.
)Doc"
);
}
};
class
PSROIPoolOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of PSROIPoolOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ROIs"
),
"Input(ROIs) of PSROIPoolOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of PSROIPoolOp should not be null."
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
rois_dims
=
ctx
->
GetInputDim
(
"ROIs"
);
PADDLE_ENFORCE
(
input_dims
.
size
()
==
4
,
"The format of input tensor is NCHW"
);
PADDLE_ENFORCE
(
rois_dims
.
size
()
==
2
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
"given as [(x1, y1, x2, y2), ...]"
);
PADDLE_ENFORCE
(
rois_dims
[
1
]
==
4
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
"given as [(x1, y1, x2, y2), ...]"
);
int
pooled_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_height"
);
int
pooled_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_width"
);
int
output_channels
=
ctx
->
Attrs
().
Get
<
int
>
(
"output_channels"
);
float
spatial_scale
=
ctx
->
Attrs
().
Get
<
float
>
(
"spatial_scale"
);
PADDLE_ENFORCE
(
input_dims
[
1
]
==
output_channels
*
pooled_height
*
pooled_width
,
"the channel of X(%d) should be equal to the product of "
"output_channels(%d), pooled_height(%d) and pooled_width(%d)"
,
input_dims
[
1
],
output_channels
,
pooled_height
,
pooled_width
);
PADDLE_ENFORCE_GT
(
pooled_height
,
0
,
"The pooled output height must be greater than 0"
);
PADDLE_ENFORCE_GT
(
pooled_width
,
0
,
"The pooled output width must be greater than 0"
);
PADDLE_ENFORCE_GT
(
output_channels
,
1
,
"The pooled output channels must greater than 1"
);
PADDLE_ENFORCE_GT
(
spatial_scale
,
0.0
f
,
"The spatial scale must greater than 0."
);
auto
out_dims
=
input_dims
;
out_dims
[
0
]
=
rois_dims
[
0
];
out_dims
[
1
]
=
output_channels
;
// input_dims[1] / (pooled_height * pooled_width);
out_dims
[
2
]
=
pooled_height
;
out_dims
[
3
]
=
pooled_width
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
PSROIPoolGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"The gradient of Out should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"The gradient of X should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
psroi_pool
,
ops
::
PSROIPoolOp
,
ops
::
PSROIPoolOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
psroi_pool_grad
,
ops
::
PSROIPoolGradOp
);
REGISTER_OP_CPU_KERNEL
(
psroi_pool
,
ops
::
CPUPSROIPoolOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUPSROIPoolOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
psroi_pool_grad
,
ops
::
CPUPSROIPoolGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUPSROIPoolGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/psroi_pool_op.cu
0 → 100644
浏览文件 @
4ecdb6f4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/psroi_pool_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
static
constexpr
int
kNumCUDAThreads
=
512
;
static
constexpr
int
kNumMaximumNumBlocks
=
4096
;
static
inline
int
NumBlocks
(
const
int
N
)
{
return
std
::
min
((
N
+
kNumCUDAThreads
-
1
)
/
kNumCUDAThreads
,
kNumMaximumNumBlocks
);
}
template
<
typename
T
>
__global__
void
GPUPSROIPoolForward
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_rois
,
const
float
spatial_scale
,
const
int
input_channels
,
const
int
height
,
const
int
width
,
const
int
output_channels
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
*
rois_batch_id_data
,
T
*
output_data
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
size_t
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
// The output is in order (n, c, ph, pw)
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
output_channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
output_channels
;
// set roi_batch_id
int
roi_batch_id
=
rois_batch_id_data
[
n
];
// [start, end) interval for spatial sampling
const
T
*
offset_input_rois
=
input_rois
+
n
*
4
;
T
roi_start_w
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
0
]))
*
spatial_scale
;
T
roi_start_h
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
1
]))
*
spatial_scale
;
T
roi_end_w
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
2
])
+
1.
)
*
spatial_scale
;
T
roi_end_h
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
3
])
+
1.
)
*
spatial_scale
;
// Force too small ROIs to be 1x1
T
roi_height
=
max
(
roi_end_h
-
roi_start_h
,
(
T
)
0.1
);
// avoid 0
T
roi_width
=
max
(
roi_end_w
-
roi_start_w
,
(
T
)
0.1
);
// Compute w and h at input feature map
T
bin_size_h
=
roi_height
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
roi_width
/
static_cast
<
T
>
(
pooled_width
);
int
hstart
=
floor
(
bin_size_h
*
static_cast
<
T
>
(
ph
)
+
roi_start_h
);
int
wstart
=
floor
(
bin_size_w
*
static_cast
<
T
>
(
pw
)
+
roi_start_w
);
int
hend
=
ceil
(
bin_size_h
*
static_cast
<
T
>
(
ph
+
1
)
+
roi_start_h
);
int
wend
=
ceil
(
bin_size_w
*
static_cast
<
T
>
(
pw
+
1
)
+
roi_start_w
);
// Add roi offsets and clip to input boundaries
hstart
=
min
(
max
(
hstart
,
0
),
height
);
hend
=
min
(
max
(
hend
,
0
),
height
);
wstart
=
min
(
max
(
wstart
,
0
),
width
);
wend
=
min
(
max
(
wend
,
0
),
width
);
bool
is_empty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
int
input_channel
=
(
c
*
pooled_height
+
ph
)
*
pooled_width
+
pw
;
const
T
*
offset_input_data
=
input_data
+
(
roi_batch_id
*
input_channels
+
input_channel
)
*
height
*
width
;
T
outsum
=
0
;
for
(
int
ih
=
hstart
;
ih
<
hend
;
++
ih
)
{
for
(
int
iw
=
wstart
;
iw
<
wend
;
++
iw
)
{
int
input_index
=
ih
*
width
+
iw
;
outsum
+=
offset_input_data
[
input_index
];
}
}
T
bin_area
=
static_cast
<
T
>
((
hend
-
hstart
)
*
(
wend
-
wstart
));
output_data
[
i
]
=
is_empty
?
0.
:
outsum
/
bin_area
;
}
}
template
<
typename
T
>
__global__
void
GPUPSROIPoolBackward
(
const
int
nthreads
,
const
T
*
input_rois
,
const
T
*
output_grad_data
,
const
float
spatial_scale
,
const
int
input_channels
,
const
int
height
,
const
int
width
,
const
int
output_channels
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
*
rois_batch_id_data
,
T
*
input_grad_data
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
index
;
i
<
nthreads
;
i
+=
offset
)
{
// The output is in order (n, c, ph, pw)
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
output_channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
output_channels
;
// set roi_batch_id
int
roi_batch_id
=
rois_batch_id_data
[
n
];
int
input_channel
=
(
c
*
pooled_height
+
ph
)
*
pooled_width
+
pw
;
int
input_offset
=
(
roi_batch_id
*
input_channels
+
input_channel
)
*
height
*
width
;
T
*
offset_input_grad_data
=
input_grad_data
+
input_offset
;
// [start, end) interval for spatial sampling
const
T
*
offset_input_rois
=
input_rois
+
n
*
4
;
T
roi_start_w
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
0
]))
*
spatial_scale
;
T
roi_start_h
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
1
]))
*
spatial_scale
;
T
roi_end_w
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
2
])
+
1.
)
*
spatial_scale
;
T
roi_end_h
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
3
])
+
1.
)
*
spatial_scale
;
// Force too small ROIs to be 1x1
T
roi_height
=
max
(
roi_end_h
-
roi_start_h
,
(
T
)
0.1
);
// avoid 0
T
roi_width
=
max
(
roi_end_w
-
roi_start_w
,
(
T
)
0.1
);
// Compute w and h at input feature map
T
bin_size_h
=
roi_height
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
roi_width
/
static_cast
<
T
>
(
pooled_width
);
int
hstart
=
floor
(
bin_size_h
*
static_cast
<
T
>
(
ph
)
+
roi_start_h
);
int
wstart
=
floor
(
bin_size_w
*
static_cast
<
T
>
(
pw
)
+
roi_start_w
);
int
hend
=
ceil
(
bin_size_h
*
static_cast
<
T
>
(
ph
+
1
)
+
roi_start_h
);
int
wend
=
ceil
(
bin_size_w
*
static_cast
<
T
>
(
pw
+
1
)
+
roi_start_w
);
// Add roi offsets and clip to input boundaries
hstart
=
min
(
max
(
hstart
,
0
),
height
);
hend
=
min
(
max
(
hend
,
0
),
height
);
wstart
=
min
(
max
(
wstart
,
0
),
width
);
wend
=
min
(
max
(
wend
,
0
),
width
);
bool
is_empty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
// Accumulate diff_val into input data
T
bin_area
=
static_cast
<
T
>
((
hend
-
hstart
)
*
(
wend
-
wstart
));
T
diff_val
=
is_empty
?
0.
:
output_grad_data
[
i
]
/
bin_area
;
for
(
int
ih
=
hstart
;
ih
<
hend
;
++
ih
)
{
for
(
int
iw
=
wstart
;
iw
<
wend
;
++
iw
)
{
int
input_index
=
ih
*
width
+
iw
;
platform
::
CudaAtomicAdd
(
offset_input_grad_data
+
input_index
,
diff_val
);
}
}
}
}
template
<
typename
Place
,
typename
T
>
class
GPUPSROIPoolOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
output_channels
=
ctx
.
Attr
<
int
>
(
"output_channels"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
in_dims
=
in
->
dims
();
int
batch_size
=
in_dims
[
0
];
int
input_channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
PADDLE_ENFORCE_EQ
(
input_channels
,
output_channels
*
pooled_height
*
pooled_width
,
"the channels of input X should equal the product of "
"output_channels x pooled_height x pooled_width"
);
int
rois_num
=
rois
->
dims
()[
0
];
if
(
rois_num
==
0
)
return
;
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
"The rois_batch_size and input(X) batch_size must be the same."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
// set rois batch id
framework
::
Tensor
rois_batch_id_list
;
rois_batch_id_list
.
Resize
({
rois_num
});
int
*
rois_batch_id_data
=
rois_batch_id_list
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
rois_batch_id_data
[
i
]
=
n
;
}
}
framework
::
Tensor
rois_batch_id_list_gpu
;
framework
::
TensorCopy
(
rois_batch_id_list
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
&
rois_batch_id_list_gpu
);
int
output_size
=
out
->
numel
();
int
blocks
=
NumBlocks
(
output_size
);
int
threads
=
kNumCUDAThreads
;
// call cuda kernel function
GPUPSROIPoolForward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_size
,
in
->
data
<
T
>
(),
rois
->
data
<
T
>
(),
spatial_scale
,
input_channels
,
height
,
width
,
output_channels
,
pooled_height
,
pooled_width
,
rois_batch_id_list_gpu
.
data
<
int
>
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
};
template
<
typename
Place
,
typename
T
>
class
GPUPSROIPoolGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
LoDTensor
>
(
"ROIs"
);
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
output_channels
=
ctx
.
Attr
<
int
>
(
"output_channels"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
int
rois_num
=
rois
->
dims
()[
0
];
int
input_channels
=
in
->
dims
()[
1
];
int
height
=
in
->
dims
()[
2
];
int
width
=
in
->
dims
()[
3
];
if
(
input_grad
)
{
// set roi batch id
framework
::
Tensor
rois_batch_id_list
;
rois_batch_id_list
.
Resize
({
rois_num
});
int
*
rois_batch_id_data
=
rois_batch_id_list
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
rois_batch_id_data
[
i
]
=
n
;
}
}
framework
::
Tensor
rois_batch_id_list_gpu
;
framework
::
TensorCopy
(
rois_batch_id_list
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
&
rois_batch_id_list_gpu
);
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
cuda_device_context
(),
input_grad
,
static_cast
<
T
>
(
0
));
int
output_grad_size
=
output_grad
->
numel
();
int
blocks
=
NumBlocks
(
output_grad_size
);
int
threads
=
kNumCUDAThreads
;
if
(
output_grad_size
>
0
)
{
GPUPSROIPoolBackward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_grad_size
,
rois
->
data
<
T
>
(),
output_grad
->
data
<
T
>
(),
spatial_scale
,
input_channels
,
height
,
width
,
output_channels
,
pooled_height
,
pooled_width
,
rois_batch_id_list_gpu
.
data
<
int
>
(),
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
psroi_pool
,
ops
::
GPUPSROIPoolOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GPUPSROIPoolOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
psroi_pool_grad
,
ops
::
GPUPSROIPoolGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GPUPSROIPoolGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/psroi_pool_op.h
0 → 100644
浏览文件 @
4ecdb6f4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
CPUPSROIPoolOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
output_channels
=
ctx
.
Attr
<
int
>
(
"output_channels"
);
auto
in_dims
=
in
->
dims
();
int
batch_size
=
in_dims
[
0
];
int
input_channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
auto
in_stride
=
framework
::
stride
(
in_dims
);
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
const
T
*
input_data
=
in
->
data
<
T
>
();
framework
::
Tensor
rois_batch_id_list
;
rois_batch_id_list
.
Resize
({
rois_num
});
int
*
rois_batch_id_data
=
rois_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
"the rois_batch_size and input(X) batch_size should be the same."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num_with_lod
,
rois_num
,
"the rois_num from input and lod must be the same"
);
PADDLE_ENFORCE_EQ
(
input_channels
,
output_channels
*
pooled_height
*
pooled_width
,
"the channels of input X should equal the product of "
"output_channels x pooled_height x pooled_width"
);
// calculate batch id index for each roi according to LoD
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
rois_batch_id_data
[
i
]
=
n
;
}
}
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
input_rois
=
rois
->
data
<
T
>
();
// calculate psroipooling, parallel processing can be implemented per ROI
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
// set roi batch id
int
roi_batch_id
=
rois_batch_id_data
[
n
];
// [start, end) interval for spatial sampling
const
T
*
offset_input_rois
=
input_rois
+
n
*
4
;
T
roi_start_w
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
0
]))
*
spatial_scale
;
T
roi_start_h
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
1
]))
*
spatial_scale
;
T
roi_end_w
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
2
])
+
1.
)
*
spatial_scale
;
T
roi_end_h
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
3
])
+
1.
)
*
spatial_scale
;
// Force too small rois to be 1 x 1
T
roi_height
=
std
::
max
(
roi_end_h
-
roi_start_h
,
(
T
)
0.1
);
// avoid 0
T
roi_width
=
std
::
max
(
roi_end_w
-
roi_start_w
,
(
T
)
0.1
);
// Compute bin size w and h at input feature map
T
bin_size_h
=
roi_height
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
roi_width
/
static_cast
<
T
>
(
pooled_width
);
// calculate each pixel of the output feature map.
int
out_roi_offset
=
n
*
out_stride
[
0
];
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
// per category
int
out_plane_offset
=
out_roi_offset
+
c
*
out_stride
[
1
];
for
(
int
ph
=
0
;
ph
<
pooled_height
;
++
ph
)
{
int
out_row_offset
=
out_plane_offset
+
ph
*
out_stride
[
2
];
for
(
int
pw
=
0
;
pw
<
pooled_width
;
++
pw
)
{
// calculate w and h at input feature map
int
hstart
=
floor
(
static_cast
<
T
>
(
ph
)
*
bin_size_h
+
roi_start_h
);
int
wstart
=
floor
(
static_cast
<
T
>
(
pw
)
*
bin_size_w
+
roi_start_w
);
int
hend
=
ceil
(
static_cast
<
T
>
(
ph
+
1
)
*
bin_size_h
+
roi_start_h
);
int
wend
=
ceil
(
static_cast
<
T
>
(
pw
+
1
)
*
bin_size_w
+
roi_start_w
);
// Add roi offsets and clip to input boundaries
hstart
=
std
::
min
(
std
::
max
(
hstart
,
0
),
height
);
wstart
=
std
::
min
(
std
::
max
(
wstart
,
0
),
width
);
hend
=
std
::
min
(
std
::
max
(
hend
,
0
),
height
);
wend
=
std
::
min
(
std
::
max
(
wend
,
0
),
width
);
int
output_index
=
out_row_offset
+
pw
;
int
input_channel
=
(
c
*
pooled_height
+
ph
)
*
pooled_width
+
pw
;
int
input_plane_offset
=
roi_batch_id
*
in_stride
[
0
]
+
input_channel
*
in_stride
[
1
];
const
T
*
offset_input_data
=
input_data
+
input_plane_offset
;
T
out_sum
=
0.
;
bool
is_empty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
for
(
int
ih
=
hstart
;
ih
<
hend
;
++
ih
)
{
for
(
int
iw
=
wstart
;
iw
<
wend
;
++
iw
)
{
int
input_index
=
ih
*
in_stride
[
2
]
+
iw
;
out_sum
+=
offset_input_data
[
input_index
];
}
}
T
bin_area
=
(
hend
-
hstart
)
*
(
wend
-
wstart
);
output_data
[
output_index
]
=
is_empty
?
0.
:
out_sum
/
bin_area
;
}
}
}
}
return
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
CPUPSROIPoolGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"ROIs"
);
auto
*
output_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
input_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
output_channels
=
ctx
.
Attr
<
int
>
(
"output_channels"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
if
(
input_grad
)
{
auto
in_dims
=
in
->
dims
();
int
input_channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
// set roi batch id
framework
::
Tensor
rois_batch_id_list
;
rois_batch_id_list
.
Resize
({
rois_num
});
int
*
rois_batch_id_data
=
rois_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
// calculate batch id index for each roi according to LoD
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
rois_batch_id_data
[
i
]
=
n
;
}
}
const
T
*
input_rois
=
rois
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// set gradient of X to be 0. before backpropagate.
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
set_zero
(
ctx
.
template
device_context
<
DeviceContext
>(),
input_grad
,
static_cast
<
T
>
(
0
));
// backpropagate gradient per output pixel
int
output_grad_size
=
output_grad
->
numel
();
for
(
int
i
=
0
;
i
<
output_grad_size
;
++
i
)
{
// The output is in order (n, c, ph, pw)
int
pw
=
i
%
pooled_width
;
int
ph
=
(
i
/
pooled_width
)
%
pooled_height
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
output_channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
output_channels
;
// set roi_batch_id
int
roi_batch_id
=
rois_batch_id_data
[
n
];
int
input_channel
=
(
c
*
pooled_height
+
ph
)
*
pooled_width
+
pw
;
int
input_offset
=
(
roi_batch_id
*
input_channels
+
input_channel
)
*
height
*
width
;
T
*
offset_input_grad_data
=
input_grad_data
+
input_offset
;
// [start, end) interval for spatial sampling
const
T
*
offset_input_rois
=
input_rois
+
n
*
4
;
T
roi_start_w
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
0
]))
*
spatial_scale
;
T
roi_start_h
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
1
]))
*
spatial_scale
;
T
roi_end_w
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
2
])
+
1.
)
*
spatial_scale
;
T
roi_end_h
=
static_cast
<
T
>
(
round
(
offset_input_rois
[
3
])
+
1.
)
*
spatial_scale
;
// Force too small ROIs to be 1x1
T
roi_height
=
std
::
max
(
roi_end_h
-
roi_start_h
,
(
T
)
0.1
);
// avoid 0
T
roi_width
=
std
::
max
(
roi_end_w
-
roi_start_w
,
(
T
)
0.1
);
// Compute w and h at input feature map
T
bin_size_h
=
roi_height
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
roi_width
/
static_cast
<
T
>
(
pooled_width
);
int
hstart
=
floor
(
bin_size_h
*
static_cast
<
T
>
(
ph
)
+
roi_start_h
);
int
wstart
=
floor
(
bin_size_w
*
static_cast
<
T
>
(
pw
)
+
roi_start_w
);
int
hend
=
ceil
(
bin_size_h
*
static_cast
<
T
>
(
ph
+
1
)
+
roi_start_h
);
int
wend
=
ceil
(
bin_size_w
*
static_cast
<
T
>
(
pw
+
1
)
+
roi_start_w
);
// Add roi offsets and clip to input boundaries
hstart
=
std
::
min
(
std
::
max
(
hstart
,
0
),
height
);
hend
=
std
::
min
(
std
::
max
(
hend
,
0
),
height
);
wstart
=
std
::
min
(
std
::
max
(
wstart
,
0
),
width
);
wend
=
std
::
min
(
std
::
max
(
wend
,
0
),
width
);
bool
is_empty
=
(
hend
<=
hstart
)
||
(
wend
<=
wstart
);
// Accumulate diff_val into input data
T
bin_area
=
static_cast
<
T
>
((
hend
-
hstart
)
*
(
wend
-
wstart
));
T
diff_val
=
is_empty
?
0.
:
output_grad_data
[
i
]
/
bin_area
;
for
(
int
ih
=
hstart
;
ih
<
hend
;
++
ih
)
{
for
(
int
iw
=
wstart
;
iw
<
wend
;
++
iw
)
{
int
input_index
=
ih
*
width
+
iw
;
offset_input_grad_data
[
input_index
]
+=
diff_val
;
}
}
}
}
return
;
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/ctr_reader.h
浏览文件 @
4ecdb6f4
...
...
@@ -16,6 +16,7 @@
#include <sys/time.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <cstdlib>
#include <fstream>
...
...
@@ -55,8 +56,7 @@ class CTRReader : public framework::FileReader {
PADDLE_ENFORCE_GT
(
thread_num
,
0
,
"thread num should be larger then 0!"
);
PADDLE_ENFORCE
(
queue
!=
nullptr
,
"LoDTensorBlockingQueue must not be null"
);
PADDLE_ENFORCE_GT
(
file_list
.
size
(),
0
,
"file list should not be empty"
);
thread_num_
=
file_list_
.
size
()
>
thread_num
?
thread_num
:
file_list_
.
size
();
thread_num_
=
std
::
min
<
size_t
>
(
file_list_
.
size
(),
thread_num
);
queue_
=
queue
;
SplitFiles
();
for
(
size_t
i
=
0
;
i
<
thread_num_
;
++
i
)
{
...
...
@@ -95,10 +95,10 @@ class CTRReader : public framework::FileReader {
queue_
->
ReOpen
();
VLOG
(
3
)
<<
"reopen success"
;
VLOG
(
3
)
<<
"thread_num "
<<
thread_num_
;
for
(
in
t
thread_id
=
0
;
thread_id
<
thread_num_
;
thread_id
++
)
{
read_threads_
.
emplace_back
(
new
std
::
thread
(
std
::
bind
(
&
ReadThread
,
file_groups_
[
thread_id
],
slots_
,
batch_size_
,
thread_id
,
&
read_thread_status_
,
queue_
)));
for
(
size_
t
thread_id
=
0
;
thread_id
<
thread_num_
;
thread_id
++
)
{
read_threads_
.
emplace_back
(
new
std
::
thread
(
std
::
bind
(
&
ReadThread
,
file_groups_
[
thread_id
],
slots_
,
batch_size_
,
static_cast
<
int
>
(
thread_id
)
,
&
read_thread_status_
,
queue_
)));
}
monitor_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
MonitorThread
,
&
read_thread_status_
,
queue_
)));
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
4ecdb6f4
...
...
@@ -56,9 +56,16 @@ ELSE()
set
(
MKLDNN_CTX_DEPS
)
ENDIF
()
nv_library
(
stream_callback_manager SRCS stream_callback_manager.cc DEPS simple_threadpool enforce
)
IF
(
WITH_GPU
)
set
(
STREAM_CALLBACK_DEPS stream_callback_manager
)
ELSE
()
set
(
STREAM_CALLBACK_DEPS
)
ENDIF
()
# memcpy depends on device_context, here add deps individually for
# avoiding cycle dependencies
cc_library
(
device_context SRCS device_context.cc init.cc DEPS simple_threadpool malloc
cc_library
(
device_context SRCS device_context.cc init.cc DEPS simple_threadpool malloc
${
STREAM_CALLBACK_DEPS
}
place eigen3 stringpiece cpu_helper cpu_info framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
)
nv_test
(
device_context_test SRCS device_context_test.cu DEPS device_context gpu_info
)
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
4ecdb6f4
...
...
@@ -222,14 +222,10 @@ class CUDADeviceContext : public DeviceContext {
template
<
typename
Callback
>
void
AddStreamCallback
(
Callback
&&
callback
)
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
callback_mtx_
);
callback_manager_
->
AddCallback
(
callback
);
}
void
WaitStreamCallback
()
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
callback_mtx_
);
callback_manager_
->
Wait
();
}
void
WaitStreamCallback
()
const
{
callback_manager_
->
Wait
();
}
#if CUDA_VERSION >= 9000
/*! \brief CublasCall may need to change cublas's config,
...
...
@@ -260,9 +256,7 @@ class CUDADeviceContext : public DeviceContext {
mutable
std
::
mutex
mtx_
;
// This lock is only used by callback
// If we use mtx_ for StreamCallbackManager, deadlock may occur sometimes
mutable
std
::
mutex
callback_mtx_
;
// StreamCallbackManager is thread-safe
std
::
unique_ptr
<
StreamCallbackManager
>
callback_manager_
;
mutable
std
::
mutex
cublas_mtx_
;
...
...
paddle/fluid/platform/stream_callback_manager.cc
0 → 100644
浏览文件 @
4ecdb6f4
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/platform/stream_callback_manager.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
#if CUDA_VERSION >= 10000
static
void
CUDART_CB
StreamCallbackFunc
(
void
*
user_data
);
#else
static
void
CUDART_CB
StreamCallbackFunc
(
cudaStream_t
stream
,
cudaError_t
status
,
void
*
user_data
)
#endif
{
std
::
unique_ptr
<
std
::
function
<
void
()
>>
func
(
reinterpret_cast
<
std
::
function
<
void
()
>
*>
(
user_data
));
(
*
func
)();
}
StreamCallbackManager
::
StreamCallbackManager
(
const
cudaStream_t
stream
)
:
stream_
(
stream
),
thread_pool_
(
1
)
{}
void
StreamCallbackManager
::
AddCallback
(
std
::
function
<
void
()
>
callback
)
const
{
auto
*
callback_func
=
new
std
::
function
<
void
()
>
(
std
::
move
(
callback
));
auto
*
func
=
new
std
::
function
<
void
()
>
([
this
,
callback_func
]
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mtx_
);
last_future_
=
thread_pool_
.
enqueue
([
callback_func
]
{
std
::
unique_ptr
<
std
::
function
<
void
()
>>
releaser
(
callback_func
);
(
*
callback_func
)();
});
});
#if CUDA_VERSION >= 10000
PADDLE_ENFORCE
(
cudaLaunchHostFunc
(
stream_
,
StreamCallbackFunc
,
func
));
#else
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
stream_
,
StreamCallbackFunc
,
func
,
0
));
#endif
}
void
StreamCallbackManager
::
Wait
()
const
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mtx_
);
if
(
last_future_
.
valid
())
{
last_future_
.
wait
();
}
}
}
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/stream_callback_manager.h
浏览文件 @
4ecdb6f4
...
...
@@ -18,67 +18,32 @@
#include <cuda.h>
#include <cuda_runtime.h>
#include <functional>
#include <future> // NOLINT
#include <memory>
#include <mutex> // NOLINT
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
platform
{
class
StreamCallbackManager
;
struct
StreamCallbackContext
{
template
<
typename
Callback
>
inline
StreamCallbackContext
(
const
StreamCallbackManager
*
manager
,
Callback
&&
callback
)
:
manager_
(
manager
),
callback_
(
callback
)
{}
const
StreamCallbackManager
*
manager_
;
// do not own
std
::
function
<
void
()
>
callback_
;
};
// NOTE(zjl): clean StreamCallbackManager to make compilation faster
// Make StreamCallbackManager thread-safe
class
StreamCallbackManager
{
public:
explicit
inline
StreamCallbackManager
(
cudaStream_t
stream
=
nullptr
)
:
stream_
(
stream
),
thread_pool_
(
new
ThreadPool
(
1
))
{}
explicit
StreamCallbackManager
(
const
cudaStream_t
stream
);
~
StreamCallbackManager
()
=
default
;
template
<
typename
Callback
>
inline
void
AddCallback
(
Callback
&&
callback
)
const
{
auto
*
stream_callback_context
=
new
StreamCallbackContext
(
this
,
std
::
forward
<
Callback
>
(
callback
));
#if CUDA_VERSION >= 10000
PADDLE_ENFORCE
(
cudaLaunchHostFunc
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
));
// NOLINT
#else
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
));
// NOLINT
#endif
}
void
AddCallback
(
std
::
function
<
void
()
>
callback
)
const
;
void
Wait
()
const
{
thread_pool_
.
reset
(
new
ThreadPool
(
1
));
}
void
Wait
()
const
;
private:
const
cudaStream_t
stream_
;
mutable
std
::
unique_ptr
<
ThreadPool
>
thread_pool_
;
// cudaStreamCallback cannot call CUDA API inside, so we have to use
// thread_pool here
#if CUDA_VERSION >= 10000
static
void
CUDART_CB
StreamCallbackFunc
(
void
*
user_data
)
#else
static
void
CUDART_CB
StreamCallbackFunc
(
cudaStream_t
stream
,
cudaError_t
status
,
void
*
user_data
)
#endif
{
auto
*
callback_context_ptr
=
reinterpret_cast
<
StreamCallbackContext
*>
(
user_data
);
callback_context_ptr
->
manager_
->
thread_pool_
->
enqueue
([
=
]()
{
std
::
unique_ptr
<
StreamCallbackContext
>
callback_context
(
callback_context_ptr
);
callback_context
->
callback_
();
});
}
mutable
::
ThreadPool
thread_pool_
;
mutable
std
::
mutex
mtx_
;
mutable
std
::
future
<
void
>
last_future_
;
};
}
// namespace platform
...
...
paddle/fluid/pybind/tensor_py.h
浏览文件 @
4ecdb6f4
...
...
@@ -162,7 +162,7 @@ void PyCPUTensorSetFromArray(
paddle
::
platform
::
CPUPlace
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -182,7 +182,7 @@ inline void PyCPUTensorSetFromArray(
paddle
::
platform
::
CPUPlace
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
int
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -200,7 +200,7 @@ void PyCUDATensorSetFromArray(
paddle
::
platform
::
CUDAPlace
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -221,7 +221,7 @@ inline void PyCUDATensorSetFromArray(
paddle
::
platform
::
CUDAPlace
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -240,7 +240,7 @@ void PyCUDAPinnedTensorSetFromArray(
const
paddle
::
platform
::
CUDAPinnedPlace
&
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
@@ -260,7 +260,7 @@ inline void PyCUDAPinnedTensorSetFromArray(
const
paddle
::
platform
::
CUDAPinnedPlace
&
place
)
{
std
::
vector
<
int64_t
>
dims
;
dims
.
reserve
(
array
.
ndim
());
for
(
size_t
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
for
(
decltype
(
array
.
ndim
())
i
=
0
;
i
<
array
.
ndim
();
++
i
)
{
dims
.
push_back
(
static_cast
<
int
>
(
array
.
shape
()[
i
]));
}
...
...
python/paddle/fluid/__init__.py
浏览文件 @
4ecdb6f4
...
...
@@ -126,9 +126,9 @@ def __bootstrap__():
'check_nan_inf'
,
'benchmark'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'use_ngraph'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
"dist_threadpool_size"
,
'eager_delete_tensor_gb'
,
'
allocator_strategy
'
,
'
reader_queue_speed_test_mode'
,
'print_sub_graph_dir
'
,
'pe_profile_fname'
'eager_delete_tensor_gb'
,
'
fast_eager_deletion_mode
'
,
'
allocator_strategy'
,
'reader_queue_speed_test_mode
'
,
'p
rint_sub_graph_dir'
,
'p
e_profile_fname'
]
if
'Darwin'
not
in
sysstr
:
read_env_flags
.
append
(
'use_pinned_memory'
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
4ecdb6f4
...
...
@@ -173,6 +173,7 @@ __all__ = [
'merge_selected_rows'
,
'get_tensor_from_selected_rows'
,
'lstm'
,
'psroi_pool'
,
]
kIgnoreIndex
=
-
100
...
...
@@ -9122,3 +9123,57 @@ def get_tensor_from_selected_rows(x, name=None):
outputs
=
{
'Out'
:
out
},
attrs
=
{})
return
out
@
templatedoc
()
def
psroi_pool
(
input
,
rois
,
output_channels
,
spatial_scale
,
pooled_height
,
pooled_width
,
name
=
None
):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.
output_channels (integer): ${output_channels_comment}
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
name (str, default None): The name of this layer.
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
"""
helper
=
LayerHelper
(
'psroi_pool'
,
**
locals
())
# check attrs
if
not
isinstance
(
output_channels
,
int
):
raise
TypeError
(
"output_channels must be int type"
)
if
not
isinstance
(
spatial_scale
,
float
):
raise
TypeError
(
"spatial_scale must be float type"
)
if
not
isinstance
(
pooled_height
,
int
):
raise
TypeError
(
"pooled_height must be int type"
)
if
not
isinstance
(
pooled_width
,
int
):
raise
TypeError
(
"pooled_width must be int type"
)
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'psroi_pool'
,
inputs
=
{
'X'
:
input
,
'ROIs'
:
rois
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'output_channels'
:
output_channels
,
'spatial_scale'
:
spatial_scale
,
'pooled_height'
:
pooled_height
,
'pooled_width'
:
pooled_width
})
return
out
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
4ecdb6f4
...
...
@@ -227,6 +227,7 @@ class TestDistBase(unittest.TestCase):
def
setUp
(
self
):
self
.
_trainers
=
2
self
.
_pservers
=
2
self
.
_port_set
=
set
()
self
.
_ps_endpoints
=
"127.0.0.1:%s,127.0.0.1:%s"
%
(
self
.
_find_free_port
(),
self
.
_find_free_port
())
self
.
_python_interp
=
sys
.
executable
...
...
@@ -242,9 +243,17 @@ class TestDistBase(unittest.TestCase):
self
.
_after_setup_config
()
def
_find_free_port
(
self
):
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
s
:
s
.
bind
((
''
,
0
))
return
s
.
getsockname
()[
1
]
def
__free_port
():
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
s
:
s
.
bind
((
''
,
0
))
return
s
.
getsockname
()[
1
]
while
True
:
port
=
__free_port
()
if
port
not
in
self
.
_port_set
:
self
.
_port_set
.
add
(
port
)
return
port
def
start_pserver
(
self
,
model_file
,
check_error_log
,
required_envs
):
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
...
...
python/paddle/fluid/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
0 → 100644
浏览文件 @
4ecdb6f4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
'0.0'
os
.
environ
[
'CPU_NUM'
]
=
'2'
import
six
import
unittest
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
def
train
(
network
,
use_cuda
,
use_parallel_executor
,
batch_size
=
32
,
pass_num
=
2
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
print
(
'Skip use_cuda=True because Paddle is not compiled with cuda'
)
return
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
batch_size
=
batch_size
)
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
=
network
(
data
,
label
,
len
(
word_dict
))
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
0.2
)
optimizer
.
minimize
(
cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
reader
=
feeder
.
decorate_reader
(
train_reader
,
multi_devices
=
use_parallel_executor
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
if
use_parallel_executor
:
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
loss_name
=
cost
.
name
)
fetch_list
=
[
cost
.
name
]
else
:
train_exe
=
exe
fetch_list
=
[
cost
]
for
pass_id
in
six
.
moves
.
xrange
(
pass_num
):
batch_id
=
0
for
data
in
reader
():
train_exe
.
run
(
feed
=
data
,
fetch_list
=
fetch_list
if
batch_id
%
4
==
0
else
[])
batch_id
+=
1
if
batch_id
>
16
:
break
class
TestBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
net
=
None
def
test_network
(
self
):
if
self
.
net
is
None
:
return
for
use_cuda
in
[
True
,
False
]:
for
use_parallel_executor
in
[
False
,
True
]:
print
(
'network: {}, use_cuda: {}, use_parallel_executor: {}'
.
format
(
self
.
net
.
__name__
,
use_cuda
,
use_parallel_executor
))
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
with
fluid
.
scope_guard
(
core
.
Scope
()):
train
(
self
.
net
,
use_cuda
,
use_parallel_executor
)
python/paddle/fluid/tests/unittests/test_eager_deletion_gru_net.py
0 → 100644
浏览文件 @
4ecdb6f4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
test_eager_deletion_dynamic_rnn_base
import
TestBase
import
paddle.fluid
as
fluid
def
gru_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
400.0
):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
gru_max_tanh
=
fluid
.
layers
.
tanh
(
gru_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
class
GRUTest
(
TestBase
):
def
setUp
(
self
):
self
.
net
=
gru_net
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_eager_deletion_lstm_net.py
0 → 100644
浏览文件 @
4ecdb6f4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
test_eager_deletion_dynamic_rnn_base
import
TestBase
import
paddle.fluid
as
fluid
import
unittest
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max_tanh
=
fluid
.
layers
.
tanh
(
lstm_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
class
LSTMTest
(
TestBase
):
def
setUp
(
self
):
self
.
net
=
lstm_net
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_eager_deletion_mnist.py
0 → 100644
浏览文件 @
4ecdb6f4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
"0.0"
from
test_parallel_executor_mnist
import
TestMNIST
class
EagerDeletionTestMNIST
(
TestMNIST
):
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_eager_deletion_transformer.py
0 → 100644
浏览文件 @
4ecdb6f4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
"0.0"
from
test_parallel_executor_transformer
import
TestTransformer
class
EagerDeletionTestTransformer
(
TestTransformer
):
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
4ecdb6f4
...
...
@@ -511,6 +511,16 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
def
test_psroi_pool
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
"x"
,
shape
=
[
245
,
30
,
30
],
dtype
=
"float32"
)
rois
=
layers
.
data
(
name
=
"rois"
,
shape
=
[
4
],
dtype
=
"float32"
,
lod_level
=
1
)
output
=
layers
.
psroi_pool
(
x
,
rois
,
5
,
0.25
,
7
,
7
)
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
def
test_roi_align
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_psroi_pool_op.py
0 → 100644
浏览文件 @
4ecdb6f4
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
math
import
numpy
as
np
import
unittest
from
op_test
import
OpTest
class
TestPSROIPoolOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_case
()
self
.
make_rois
()
self
.
calc_psroi_pool
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'ROIs'
:
(
self
.
rois
[:,
1
:
5
],
self
.
rois_lod
)}
self
.
attrs
=
{
'output_channels'
:
self
.
output_channels
,
'spatial_scale'
:
self
.
spatial_scale
,
'pooled_height'
:
self
.
pooled_height
,
'pooled_width'
:
self
.
pooled_width
}
self
.
outputs
=
{
'Out'
:
self
.
outs
}
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
channels
=
3
*
2
*
2
self
.
height
=
6
self
.
width
=
4
self
.
x_dim
=
[
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
]
self
.
spatial_scale
=
1.0
/
4.0
self
.
output_channels
=
3
self
.
pooled_height
=
2
self
.
pooled_width
=
2
self
.
x
=
np
.
random
.
random
(
self
.
x_dim
).
astype
(
'float32'
)
def
make_rois
(
self
):
rois
=
[]
self
.
rois_lod
=
[[]]
for
bno
in
range
(
self
.
batch_size
):
self
.
rois_lod
[
0
].
append
(
bno
+
1
)
for
i
in
range
(
bno
+
1
):
x1
=
np
.
random
.
random_integers
(
0
,
self
.
width
//
self
.
spatial_scale
-
self
.
pooled_width
)
y1
=
np
.
random
.
random_integers
(
0
,
self
.
height
//
self
.
spatial_scale
-
self
.
pooled_height
)
x2
=
np
.
random
.
random_integers
(
x1
+
self
.
pooled_width
,
self
.
width
//
self
.
spatial_scale
)
y2
=
np
.
random
.
random_integers
(
y1
+
self
.
pooled_height
,
self
.
height
//
self
.
spatial_scale
)
roi
=
[
bno
,
x1
,
y1
,
x2
,
y2
]
rois
.
append
(
roi
)
self
.
rois_num
=
len
(
rois
)
self
.
rois
=
np
.
array
(
rois
).
astype
(
'float32'
)
def
calc_psroi_pool
(
self
):
output_shape
=
(
self
.
rois_num
,
self
.
output_channels
,
self
.
pooled_height
,
self
.
pooled_width
)
out_data
=
np
.
zeros
(
output_shape
)
for
i
in
range
(
self
.
rois_num
):
roi
=
self
.
rois
[
i
]
roi_batch_id
=
int
(
roi
[
0
])
roi_start_w
=
round
(
roi
[
1
])
*
self
.
spatial_scale
roi_start_h
=
round
(
roi
[
2
])
*
self
.
spatial_scale
roi_end_w
=
(
round
(
roi
[
3
])
+
1.
)
*
self
.
spatial_scale
roi_end_h
=
(
round
(
roi
[
4
])
+
1.
)
*
self
.
spatial_scale
roi_height
=
max
(
roi_end_h
-
roi_start_h
,
0.1
)
roi_width
=
max
(
roi_end_w
-
roi_start_w
,
0.1
)
bin_size_h
=
roi_height
/
float
(
self
.
pooled_height
)
bin_size_w
=
roi_width
/
float
(
self
.
pooled_width
)
x_i
=
self
.
x
[
roi_batch_id
]
for
c
in
range
(
self
.
output_channels
):
for
ph
in
range
(
self
.
pooled_height
):
for
pw
in
range
(
self
.
pooled_width
):
hstart
=
int
(
math
.
floor
(
float
(
ph
)
*
bin_size_h
+
roi_start_h
))
wstart
=
int
(
math
.
floor
(
float
(
pw
)
*
bin_size_w
+
roi_start_w
))
hend
=
int
(
math
.
ceil
(
float
(
ph
+
1
)
*
bin_size_h
+
roi_start_h
))
wend
=
int
(
math
.
ceil
(
float
(
pw
+
1
)
*
bin_size_w
+
roi_start_w
))
hstart
=
min
(
max
(
hstart
,
0
),
self
.
height
)
hend
=
min
(
max
(
hend
,
0
),
self
.
height
)
wstart
=
min
(
max
(
wstart
,
0
),
self
.
width
)
wend
=
min
(
max
(
wend
,
0
),
self
.
width
)
c_in
=
(
c
*
self
.
pooled_height
+
ph
)
*
self
.
pooled_width
+
pw
is_empty
=
(
hend
<=
hstart
)
or
(
wend
<=
wstart
)
out_sum
=
0.
for
ih
in
range
(
hstart
,
hend
):
for
iw
in
range
(
wstart
,
wend
):
out_sum
+=
x_i
[
c_in
,
ih
,
iw
]
bin_area
=
(
hend
-
hstart
)
*
(
wend
-
wstart
)
out_data
[
i
,
c
,
ph
,
pw
]
=
0.
if
is_empty
else
(
out_sum
/
float
(
bin_area
))
self
.
outs
=
out_data
.
astype
(
'float32'
)
def
setUp
(
self
):
self
.
op_type
=
'psroi_pool'
self
.
set_data
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录