Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
4c9699c5
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4c9699c5
编写于
8月 15, 2017
作者:
D
dongzhihong
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into mul_op
上级
e0395a53
33d502e7
变更
43
隐藏空白更改
内联
并排
Showing
43 changed file
with
609 addition
and
648 deletion
+609
-648
CMakeLists.txt
CMakeLists.txt
+2
-2
Dockerfile
Dockerfile
+8
-8
cmake/external/openblas.cmake
cmake/external/openblas.cmake
+9
-1
paddle/framework/backward.cc
paddle/framework/backward.cc
+36
-26
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+30
-40
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+22
-21
paddle/framework/grad_op_builder_test.cc
paddle/framework/grad_op_builder_test.cc
+8
-18
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+77
-117
paddle/framework/op_registry_test.cc
paddle/framework/op_registry_test.cc
+4
-5
paddle/framework/operator.cc
paddle/framework/operator.cc
+7
-11
paddle/framework/operator.h
paddle/framework/operator.h
+14
-5
paddle/framework/operator_test.cc
paddle/framework/operator_test.cc
+9
-6
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+43
-11
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+2
-1
paddle/operators/add_op.cc
paddle/operators/add_op.cc
+1
-2
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+2
-3
paddle/operators/fill_zeros_like_op.cc
paddle/operators/fill_zeros_like_op.cc
+2
-1
paddle/operators/gather.h
paddle/operators/gather.h
+2
-2
paddle/operators/gather_test.cc
paddle/operators/gather_test.cc
+3
-3
paddle/operators/gaussian_random_op.cc
paddle/operators/gaussian_random_op.cc
+2
-1
paddle/operators/math/CMakeLists.txt
paddle/operators/math/CMakeLists.txt
+2
-7
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+1
-2
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+1
-3
paddle/operators/net_op.cc
paddle/operators/net_op.cc
+2
-2
paddle/operators/net_op_test.cc
paddle/operators/net_op_test.cc
+5
-12
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+16
-27
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+25
-4
paddle/operators/recurrent_op_test.cc
paddle/operators/recurrent_op_test.cc
+0
-252
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+0
-1
paddle/operators/rowwise_add_op.cc
paddle/operators/rowwise_add_op.cc
+2
-1
paddle/operators/scatter.h
paddle/operators/scatter.h
+92
-0
paddle/operators/scatter_test.cc
paddle/operators/scatter_test.cc
+52
-0
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+1
-1
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+2
-3
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+2
-2
paddle/operators/uniform_random_op.cc
paddle/operators/uniform_random_op.cc
+2
-2
paddle/platform/enforce.h
paddle/platform/enforce.h
+42
-8
paddle/scripts/submit_local.sh.in
paddle/scripts/submit_local.sh.in
+2
-0
python/CMakeLists.txt
python/CMakeLists.txt
+13
-1
python/paddle/trainer_config_helpers/evaluators.py
python/paddle/trainer_config_helpers/evaluators.py
+22
-18
python/paddle/v2/framework/op.py
python/paddle/v2/framework/op.py
+23
-1
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+7
-12
python/setup.py.in
python/setup.py.in
+12
-5
未找到文件。
CMakeLists.txt
浏览文件 @
4c9699c5
...
...
@@ -36,8 +36,8 @@ include(simd)
################################ Configurations #######################################
option
(
WITH_GPU
"Compile PaddlePaddle with NVIDIA GPU"
${
CUDA_FOUND
}
)
option
(
WITH_AVX
"Compile PaddlePaddle with AVX intrinsics"
${
AVX_FOUND
}
)
option
(
WITH_MKLDNN
"Compile PaddlePaddle with mkl-dnn support."
OFF
)
option
(
WITH_MKLML
"Compile PaddlePaddle with mklml package."
OFF
)
option
(
WITH_MKLDNN
"Compile PaddlePaddle with mkl-dnn support."
${
AVX_FOUND
}
)
option
(
WITH_MKLML
"Compile PaddlePaddle with mklml package."
${
AVX_FOUND
}
)
option
(
WITH_DSO
"Compile PaddlePaddle with dynamic linked CUDA"
ON
)
option
(
WITH_TESTING
"Compile PaddlePaddle with unit testing"
ON
)
option
(
WITH_SWIG_PY
"Compile PaddlePaddle with inference api"
ON
)
...
...
Dockerfile
浏览文件 @
4c9699c5
...
...
@@ -34,9 +34,6 @@ RUN apt-get update && \
net-tools
&&
\
apt-get clean
-y
# paddle is using numpy.flip, which is introduced since 1.12.0
RUN
pip
--no-cache-dir
install
'numpy>=1.12.0'
# Install Go and glide
RUN
wget
-qO-
https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz |
\
tar
-xz
-C
/usr/local
&&
\
...
...
@@ -58,13 +55,16 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# FIXME: due to temporary ipykernel dependency issue, specify ipykernel jupyter
# version util jupyter fixes this issue.
RUN
pip
install
--upgrade
pip
&&
\
pip
install
-U
'protobuf==3.1.0'
&&
\
pip
install
-U
wheel pillow BeautifulSoup
&&
\
pip
install
-U
wheel
&&
\
pip
install
-U
docopt PyYAML sphinx
&&
\
pip
install
-U
sphinx-rtd-theme
==
0.1.9 recommonmark
&&
\
pip
install
pre-commit
'requests==2.9.2'
'ipython==5.3.0'
&&
\
pip
install
-U
sphinx-rtd-theme
==
0.1.9 recommonmark
RUN
pip
install
pre-commit
'ipython==5.3.0'
&&
\
pip
install
'ipykernel==4.6.0'
'jupyter==1.0.0'
&&
\
pip
install
opencv-python rarfile
'scipy>=0.19.0'
'nltk>=3.2.2'
pip
install
opencv-python
COPY
./python/requirements.txt /root/
RUN
pip
install
-r
/root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
...
...
cmake/external/openblas.cmake
浏览文件 @
4c9699c5
...
...
@@ -73,10 +73,18 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET
(
dummyfile
${
CMAKE_CURRENT_BINARY_DIR
}
/cblas_dummy.c
)
FILE
(
WRITE
${
dummyfile
}
"const char * dummy =
\"
${
dummyfile
}
\"
;"
)
ADD_LIBRARY
(
cblas STATIC
${
dummyfile
}
)
IF
(
${
CBLAS_PROVIDER
}
MATCHES MKL
)
ADD_LIBRARY
(
cblas SHARED
${
dummyfile
}
)
ELSE
()
ADD_LIBRARY
(
cblas STATIC
${
dummyfile
}
)
ENDIF
()
TARGET_LINK_LIBRARIES
(
cblas
${
CBLAS_LIBRARIES
}
)
IF
(
NOT
${
CBLAS_FOUND
}
)
ADD_DEPENDENCIES
(
cblas extern_openblas
)
LIST
(
APPEND external_project_dependencies cblas
)
ELSE
()
IF
(
"
${
CBLAS_PROVIDER
}
"
STREQUAL
"MKLML"
)
ADD_DEPENDENCIES
(
cblas mklml
)
ENDIF
()
ENDIF
(
NOT
${
CBLAS_FOUND
}
)
paddle/framework/backward.cc
浏览文件 @
4c9699c5
...
...
@@ -22,7 +22,7 @@ namespace paddle {
namespace
framework
{
template
<
typename
Map
,
typename
T
>
static
void
ForEachVarName
(
Map
&
names
,
T
callback
)
{
static
void
ForEachVarName
(
const
Map
&
names
,
T
callback
)
{
for
(
auto
&
name
:
names
)
{
for
(
auto
&
n
:
name
.
second
)
{
if
(
callback
(
n
))
return
;
...
...
@@ -30,6 +30,7 @@ static void ForEachVarName(Map& names, T callback) {
}
}
// return whether all the names + suffixes in the set
static
bool
AllInSet
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>&
names
,
const
std
::
string
&
suffix
,
const
std
::
unordered_set
<
std
::
string
>&
set
)
{
...
...
@@ -43,12 +44,12 @@ static bool AllInSet(
static
std
::
shared_ptr
<
OperatorBase
>
NOP
()
{
auto
net_op
=
std
::
make_shared
<
operators
::
NetOp
>
();
net_op
->
type_
=
"@NOP@"
;
net_op
->
SetType
(
"@NOP@"
)
;
net_op
->
CompleteAddOp
();
return
net_op
;
}
// Get backward operator from a forward operator,
recursively
implementation.
// Get backward operator from a forward operator,
a recursive
implementation.
//
// no_grad_names the gradient variable names without gradient calculating.
//
...
...
@@ -56,28 +57,31 @@ static std::shared_ptr<OperatorBase> NOP() {
// BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
// pass `uniq_id` through recursive calling.
//
// returns The backward operator.
For simple situation, it is
a simple
// operator
. For complex situation, it is
a NetOp.
// returns The backward operator.
In a simple situation, it may be
a simple
// operator
, in a complex situation, it maybe
a NetOp.
//
// See Backward.h for details
static
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
);
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
)
{
// If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take
// too much time for calculation, but it is useful for simplifying logic.
if
(
AllInSet
(
forwardOp
.
inputs_
,
kGradVarSuffix
,
no_grad_names
))
{
if
(
AllInSet
(
forwardOp
.
Inputs
()
/*names*/
,
kGradVarSuffix
/*suffix*/
,
no_grad_names
/*set*/
))
{
return
NOP
();
}
// All output gradients of forwarding operator do not need to calculate.
// Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
if
(
AllInSet
(
forwardOp
.
outputs_
,
kGradVarSuffix
,
no_grad_names
))
{
ForEachVarName
(
forwardOp
.
inputs_
,
if
(
AllInSet
(
forwardOp
.
Outputs
()
/*names*/
,
kGradVarSuffix
/*suffix*/
,
no_grad_names
/*set*/
))
{
ForEachVarName
(
forwardOp
.
Inputs
(),
[
&
no_grad_names
](
const
std
::
string
&
name
)
->
bool
{
no_grad_names
.
insert
(
GradVarName
(
name
));
return
false
;
...
...
@@ -93,17 +97,17 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
auto
&
forwardNet
=
static_cast
<
const
operators
::
NetOp
&>
(
forwardOp
);
// Map from output gradient variable name to operator's indices in
// backward net. That operator generates that variable.
// backward net
's ops_
. That operator generates that variable.
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
size_t
>>
dup_output_ops
;
size_t
local_op_id
=
0
;
// reversely travel forwardNet
// reversely travel forwardNet
and collect all duplicate outputs.
for
(
auto
it
=
forwardNet
.
ops_
.
rbegin
();
it
!=
forwardNet
.
ops_
.
rend
();
++
it
,
++
local_op_id
)
{
auto
fwd
=
*
it
;
auto
bwd
=
BackwardRecursive
(
*
fwd
,
no_grad_names
,
uniq_id
);
net
->
AddOp
(
bwd
);
ForEachVarName
(
bwd
->
outputs_
,
ForEachVarName
(
bwd
->
Outputs
()
,
[
&
dup_output_ops
,
local_op_id
](
const
std
::
string
&
out
)
{
dup_output_ops
[
out
].
emplace_back
(
local_op_id
);
return
false
;
...
...
@@ -112,45 +116,51 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// Get unique ID for this method.
auto
uid
=
uniq_id
++
;
// TODO(dzh): more comment
// multiple operators which have the same output (y for example) may
// overwrite the same y variable when backward, special operations are token
// to handle this case. For each duplicate output, rename it to an alias
// (original name with a offset), append an `add` op for its operator,
// and finally sum all the alias variable to the final output variable y.
using
Pos
=
std
::
pair
<
size_t
,
std
::
shared_ptr
<
OperatorBase
>>
;
std
::
list
<
Pos
>
insert_position
;
for
(
auto
&
dup_output_op
:
dup_output_ops
)
{
const
std
::
string
&
name
=
dup_output_op
.
first
;
auto
&
dup_op
=
dup_output_op
.
second
;
// no duplicate output
if
(
dup_op
.
size
()
==
1
)
continue
;
std
::
vector
<
std
::
string
>
dup_outputs
;
// process the duplicate outputs
std
::
vector
<
std
::
string
>
dup_outputs
;
for
(
size_t
i
=
0
;
i
<
dup_op
.
size
();
++
i
)
{
// rename each duplicate output to an alias
auto
op_offset
=
dup_op
[
i
];
dup_outputs
.
push_back
(
name
+
"@RENAME@"
+
std
::
to_string
(
uid
)
+
"@"
+
std
::
to_string
(
i
));
net
->
ops_
[
op_offset
]
->
Rename
(
name
,
dup_outputs
.
back
());
}
// collect all the offset to append `add` op for each alias
insert_position
.
push_back
(
{
dup_op
.
back
(),
OpRegistry
::
CreateOp
(
"add"
,
{{
"X"
,
{
dup_outputs
}}},
{{
"Out"
,
{
name
}}},
{{
"input_format"
,
std
::
vector
<
int
>
{
0
,
static_cast
<
int
>
(
dup_outputs
.
size
())}}})});
{
dup_op
.
back
(),
OpRegistry
::
CreateOp
(
"add"
,
{{
"X"
,
{
dup_outputs
}}},
{{
"Out"
,
{
name
}}},
{})});
}
// make sure the inserted `add` ops follow the BFS order.
insert_position
.
sort
(
[](
const
Pos
&
l
,
const
Pos
&
r
)
{
return
l
.
first
>
r
.
first
;
});
for
(
auto
&
pos
:
insert_position
)
{
net
->
InsertOp
(
pos
.
first
+
1
,
pos
.
second
);
}
}
else
{
std
::
shared_ptr
<
OperatorBase
>
grad_op
=
OpRegistry
::
CreateGradOp
(
forwardOp
);
ForEachVarName
(
grad_op
->
inputs_
,
[
&
no_grad_names
,
&
net
](
std
::
string
&
grad_input
)
{
ForEachVarName
(
grad_op
->
Inputs
(),
[
&
no_grad_names
,
&
net
,
grad_op
](
const
std
::
string
&
grad_input
)
{
if
(
no_grad_names
.
count
(
grad_input
))
{
// +1 for \0
std
::
string
prefix
=
grad_input
.
substr
(
0
,
grad_input
.
size
()
-
sizeof
(
kGradVarSuffix
)
/
sizeof
(
char
)
+
1
);
grad_
input
=
prefix
+
kZeroVarSuffix
;
grad_
op
->
Rename
(
grad_input
,
prefix
+
kZeroVarSuffix
)
;
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
...
...
@@ -160,10 +170,10 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
return
false
;
});
ForEachVarName
(
grad_op
->
outputs_
,
[
&
no_grad_names
](
std
::
string
&
grad_output
)
{
ForEachVarName
(
grad_op
->
Outputs
()
,
[
&
no_grad_names
,
&
grad_op
](
const
std
::
string
&
grad_output
)
{
if
(
no_grad_names
.
count
(
grad_output
))
{
grad_o
utput
=
kEmptyVarName
;
grad_o
p
->
Rename
(
grad_output
,
kEmptyVarName
)
;
}
return
false
;
});
...
...
@@ -173,10 +183,10 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
}
net
->
AddOp
(
grad_op
);
}
net
->
type_
=
"@GENERATED_BACKWARD@"
;
net
->
SetType
(
"@GENERATED_BACKWARD@"
)
;
net
->
CompleteAddOp
();
return
net
;
}
}
// namespace framework
// See header for comments
std
::
shared_ptr
<
OperatorBase
>
Backward
(
...
...
paddle/framework/backward_test.cc
浏览文件 @
4c9699c5
...
...
@@ -28,13 +28,6 @@ using OpAttrChecker = framework::OpAttrChecker;
using
Scope
=
framework
::
Scope
;
using
DeviceContext
=
platform
::
DeviceContext
;
class
EmptyOp
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
RowWiseAddOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
RowWiseAddOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
...
...
@@ -155,27 +148,24 @@ class AddOpMaker : public OpProtoAndCheckerMaker {
namespace
f
=
paddle
::
framework
;
namespace
ops
=
paddle
::
operators
;
using
EnforceNotMet
=
paddle
::
platform
::
EnforceNotMet
;
REGISTER_OP
(
rowwise_add
,
f
::
EmptyOp
,
f
::
RowWiseAddOpMaker
);
REGISTER_GRADIENT_OP
(
rowwise_add
,
rowwise_add_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
mul
,
f
::
EmptyOp
,
f
::
MulOpMaker
);
REGISTER_GRADIENT_OP
(
mul
,
mul_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
sigmoid
,
f
::
EmptyOp
,
f
::
SigmoidOpMaker
);
REGISTER_GRADIENT_OP
(
sigmoid
,
sigmoid_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
nograd
,
f
::
EmptyOp
,
f
::
NoGradOpMaker
);
REGISTER_OP
(
fill_zeros_like
,
f
::
EmptyOp
,
f
::
FillZeroOpMaker
);
REGISTER_OP
(
add
,
f
::
EmptyOp
,
f
::
AddOpMaker
);
REGISTER_GRADIENT_OP
(
add
,
add_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
fc
,
f
::
FcOp
,
f
::
FcOpMaker
);
REGISTER_OP
(
many_output_op
,
f
::
EmptyOp
,
f
::
ManyOutputOpMaker
);
REGISTER_GRADIENT_OP
(
many_output_op
,
many_output_op_grad
,
f
::
EmptyOp
);
REGISTER_OP
(
rowwise_add
,
f
::
NOP
,
f
::
RowWiseAddOpMaker
,
rowwise_add_grad
,
f
::
NOP
);
REGISTER_OP
(
mul
,
f
::
NOP
,
f
::
MulOpMaker
,
mul_grad
,
f
::
NOP
);
REGISTER_OP
(
sigmoid
,
f
::
NOP
,
f
::
SigmoidOpMaker
,
sigmoid_grad
,
f
::
NOP
);
REGISTER_OP_WITHOUT_GRADIENT
(
nograd
,
f
::
NOP
,
f
::
NoGradOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
fill_zeros_like
,
f
::
NOP
,
f
::
FillZeroOpMaker
);
REGISTER_OP
(
add
,
f
::
NOP
,
f
::
AddOpMaker
,
add_grad
,
f
::
NOP
);
REGISTER_OP_WITHOUT_GRADIENT
(
fc
,
f
::
FcOp
,
f
::
FcOpMaker
);
REGISTER_OP
(
many_output_op
,
f
::
NOP
,
f
::
ManyOutputOpMaker
,
many_output_op_grad
,
f
::
NOP
);
TEST
(
Backward
,
simple_op_grad
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{{
"X"
,
{
"x"
}},
{
"b"
,
{
"b"
}}},
{{
"Out"
,
{
"out"
}}},
{});
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
OpRegistry
::
CreateGradOp
(
*
fwd
);
ASSERT_EQ
(
1UL
,
gop
->
inputs_
.
size
());
ASSERT_EQ
(
"rowwise_add_grad"
,
gop
->
type_
);
ASSERT_EQ
(
1UL
,
gop
->
Inputs
()
.
size
());
ASSERT_EQ
(
"rowwise_add_grad"
,
gop
->
Type
()
);
ASSERT_EQ
(
f
::
GradVarName
(
"x"
),
gop
->
Output
(
f
::
GradVarName
(
"X"
)));
ASSERT_EQ
(
f
::
GradVarName
(
"b"
),
gop
->
Output
(
f
::
GradVarName
(
"b"
)));
}
...
...
@@ -211,13 +201,13 @@ TEST(Backward, net_fc_backward_normal) {
ASSERT_EQ
(
3UL
,
net
->
ops_
.
size
());
f
::
OperatorBase
&
d_sigmoid
=
*
net
->
ops_
[
0
];
ASSERT_EQ
(
"sigmoid_grad"
,
d_sigmoid
.
type_
);
ASSERT_EQ
(
"sigmoid_grad"
,
d_sigmoid
.
Type
()
);
f
::
OperatorBase
&
d_add
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"rowwise_add_grad"
,
d_add
.
type_
);
ASSERT_EQ
(
"rowwise_add_grad"
,
d_add
.
Type
()
);
f
::
OperatorBase
&
d_mul
=
*
net
->
ops_
[
2
];
ASSERT_EQ
(
"mul_grad"
,
d_mul
.
type_
);
ASSERT_EQ
(
"mul_grad"
,
d_mul
.
Type
()
);
}
TEST
(
Backward
,
net_fc_backward_not_have_b
)
{
...
...
@@ -237,10 +227,10 @@ TEST(Backward, net_fc_backward_not_have_b) {
ASSERT_EQ
(
2UL
,
net
->
ops_
.
size
());
f
::
OperatorBase
&
d_sigmoid
=
*
net
->
ops_
[
0
];
ASSERT_EQ
(
"sigmoid_grad"
,
d_sigmoid
.
type_
);
ASSERT_EQ
(
"sigmoid_grad"
,
d_sigmoid
.
Type
()
);
f
::
OperatorBase
&
d_mul
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"mul_grad"
,
d_mul
.
type_
);
ASSERT_EQ
(
"mul_grad"
,
d_mul
.
Type
()
);
}
TEST
(
Backward
,
net_input_of_network_not_need_grad
)
{
...
...
@@ -294,7 +284,7 @@ TEST(Backward, net_shared_weight) {
ASSERT_TRUE
(
bwd
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
ops
::
NetOp
*>
(
bwd
.
get
());
ASSERT_EQ
(
3UL
,
bwd_net
->
ops_
.
size
());
ASSERT_EQ
(
"add"
,
bwd_net
->
ops_
[
2
]
->
type_
);
ASSERT_EQ
(
"add"
,
bwd_net
->
ops_
[
2
]
->
Type
()
);
}
TEST
(
Backward
,
op_register_grad_not_for_network
)
{
...
...
@@ -335,15 +325,15 @@ TEST(Backward, op_part_of_output_are_not_need) {
ASSERT_EQ
(
net
->
ops_
.
size
(),
2UL
);
auto
&
fill_zero
=
*
net
->
ops_
[
0
];
ASSERT_EQ
(
"fill_zeros_like"
,
fill_zero
.
type_
);
ASSERT_EQ
(
"fill_zeros_like"
,
fill_zero
.
Type
()
);
ASSERT_EQ
(
1UL
,
fill_zero
.
Inputs
(
"Src"
).
size
());
ASSERT_EQ
(
"Z"
,
fill_zero
.
Input
(
"Src"
));
ASSERT_EQ
(
1UL
,
fill_zero
.
Outputs
(
"Dst"
).
size
());
ASSERT_EQ
(
std
::
string
(
"Z"
)
+
f
::
kZeroVarSuffix
,
fill_zero
.
Output
(
"Dst"
));
auto
&
d_many_out
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"many_output_op_grad"
,
d_many_out
.
type_
);
ASSERT_EQ
(
1UL
+
2UL
+
2UL
,
d_many_out
.
inputs_
.
size
());
// I/O/OG
ASSERT_EQ
(
"many_output_op_grad"
,
d_many_out
.
Type
()
);
ASSERT_EQ
(
1UL
+
2UL
+
2UL
,
d_many_out
.
Inputs
()
.
size
());
// I/O/OG
ASSERT_EQ
(
std
::
string
(
"Z"
)
+
f
::
kZeroVarSuffix
,
d_many_out
.
Input
(
f
::
GradVarName
(
"z"
)));
ASSERT_EQ
(
f
::
GradVarName
(
"Y"
),
d_many_out
.
Input
(
f
::
GradVarName
(
"y"
)));
...
...
@@ -355,9 +345,9 @@ TEST(Backward, op_part_of_input_are_not_need) {
{{
"Out"
,
{
"out"
}}},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"a"
});
auto
&
grad_mul
=
*
backward
;
ASSERT_EQ
(
grad_mul
.
type_
,
"mul_grad"
);
ASSERT_EQ
(
grad_mul
.
inputs_
.
size
(),
2UL
+
1UL
+
1UL
);
ASSERT_EQ
(
grad_mul
.
outputs_
.
size
(),
2UL
);
ASSERT_EQ
(
grad_mul
.
Type
()
,
"mul_grad"
);
ASSERT_EQ
(
grad_mul
.
Inputs
()
.
size
(),
2UL
+
1UL
+
1UL
);
ASSERT_EQ
(
grad_mul
.
Outputs
()
.
size
(),
2UL
);
ASSERT_EQ
(
grad_mul
.
Output
(
f
::
GradVarName
(
"X"
)),
f
::
kEmptyVarName
);
ASSERT_EQ
(
grad_mul
.
Output
(
f
::
GradVarName
(
"Y"
)),
f
::
GradVarName
(
"b"
));
ASSERT_EQ
(
grad_mul
.
Input
(
f
::
GradVarName
(
"Out"
)),
f
::
GradVarName
(
"out"
));
...
...
@@ -395,18 +385,18 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
auto
&
grad_fc
=
*
bwd_net
->
ops_
[
0
];
const
char
*
all
=
paddle
::
operators
::
NetOp
::
kAll
;
EXPECT_EQ
(
grad_fc
.
inputs_
[
all
]
.
size
(),
EXPECT_EQ
(
grad_fc
.
Inputs
(
all
)
.
size
(),
2UL
/* external input number */
+
1UL
/* external output number*/
+
1UL
/* number of gradient of external output*/
+
2U
/* internal variable number*/
);
EXPECT_EQ
(
grad_fc
.
outputs_
[
all
]
.
size
(),
EXPECT_EQ
(
grad_fc
.
Outputs
(
all
)
.
size
(),
2UL
/* input number of mul*/
+
2UL
/* input number of rowwise_add
*/
+
1UL
/* input number of sigmod */
);
EXPECT_EQ
(
bwd_net
->
ops_
[
1
]
->
inputs_
[
all
]
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
1
]
->
outputs_
[
all
]
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
inputs_
[
all
]
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
outputs_
[
all
]
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
1
]
->
Inputs
(
all
)
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
1
]
->
Outputs
(
all
)
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
Inputs
(
all
)
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
Outputs
(
all
)
.
size
(),
0UL
);
}
paddle/framework/grad_op_builder.cc
浏览文件 @
4c9699c5
...
...
@@ -13,23 +13,20 @@ express or implied. See the License for the specific language governing
permissions and limitations under the License. */
#include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
framework
{
enum
class
OpArgType
{
IN
,
OUT
};
static
void
TransOpArg
(
const
OperatorBase
*
src_op
,
OperatorBase
::
VarNameMap
*
vars
,
const
OpArgType
&
src_type
,
bool
is_grad
)
{
static
void
TransOpArg
(
const
OperatorBase
*
src_op
,
const
OpArgType
&
src_type
,
bool
is_grad
,
OperatorBase
::
VarNameMap
*
vars
)
{
const
auto
&
src_inout
=
src_type
==
OpArgType
::
IN
?
src_op
->
inputs_
:
src_op
->
outputs_
;
src_type
==
OpArgType
::
IN
?
src_op
->
Inputs
()
:
src_op
->
Outputs
()
;
auto
&
dst_inout
=
*
vars
;
const
OpProto
&
proto
=
OpProtos
().
at
(
src_op
->
type_
);
const
OpProto
*
proto
=
OpRegistry
::
op_info_map
().
at
(
src_op
->
Type
()).
proto_
;
const
auto
&
src_arg_list
=
src_type
==
OpArgType
::
IN
?
proto
.
inputs
()
:
proto
.
outputs
();
src_type
==
OpArgType
::
IN
?
proto
->
inputs
()
:
proto
->
outputs
();
for
(
const
auto
&
arg
:
src_arg_list
)
{
if
(
arg
.
no_gradient
()
&&
!
is_grad
)
continue
;
const
std
::
string
src_name
=
arg
.
name
();
...
...
@@ -43,22 +40,26 @@ static void TransOpArg(const OperatorBase* src_op,
}
OperatorBase
*
BuildGradOp
(
const
OperatorBase
*
op
)
{
auto
gop_type_it
=
OpRegistry
::
grad_ops
().
find
(
op
->
type_
);
PADDLE_ENFORCE
(
gop_type_it
!=
OpRegistry
::
grad_ops
().
end
(),
"Operator %s do not register gradient type"
,
op
->
type_
);
auto
&
grad_op_type
=
gop_type_it
->
second
;
auto
it
=
OpRegistry
::
op_info_map
().
find
(
op
->
Type
());
PADDLE_ENFORCE
(
it
!=
OpRegistry
::
op_info_map
().
end
(),
"'%s' has not been registered."
,
op
->
Type
());
PADDLE_ENFORCE
(
it
->
second
.
proto_
!=
nullptr
,
"'%s' has no OpProto."
,
op
->
Type
());
std
::
string
grad_op_type
=
it
->
second
.
grad_op_type_
;
PADDLE_ENFORCE
(
!
grad_op_type
.
empty
(),
"'%s' has no gradient operator."
,
op
->
Type
());
OperatorBase
::
VarNameMap
inputs
;
OperatorBase
::
VarNameMap
outputs
;
TransOpArg
(
op
,
&
inputs
,
OpArgType
::
IN
,
false
);
// I
TransOpArg
(
op
,
&
inputs
,
OpArgType
::
OUT
,
false
);
// O
TransOpArg
(
op
,
&
inputs
,
OpArgType
::
OUT
,
true
);
// OG
TransOpArg
(
op
,
&
outputs
,
OpArgType
::
IN
,
true
);
// IG
auto
gop_it
=
OpRegistry
::
op_creators
().
find
(
grad_op_type
);
PADDLE_ENFORCE
(
gop_it
!=
OpRegistry
::
op_creators
().
end
(),
"Operator %s 's Gradient %s's creator cannot be found"
,
op
->
type_
,
grad_op_type
);
TransOpArg
(
op
,
OpArgType
::
IN
,
false
,
&
inputs
);
// I
TransOpArg
(
op
,
OpArgType
::
OUT
,
false
,
&
inputs
);
// O
TransOpArg
(
op
,
OpArgType
::
OUT
,
true
,
&
inputs
);
// OG
TransOpArg
(
op
,
OpArgType
::
IN
,
true
,
&
outputs
);
// IG
return
gop_it
->
second
(
grad_op_type
,
inputs
,
outputs
,
op
->
attrs_
);
it
=
OpRegistry
::
op_info_map
().
find
(
grad_op_type
);
PADDLE_ENFORCE
(
it
!=
OpRegistry
::
op_info_map
().
end
(),
"'%s' has not been registered."
,
grad_op_type
);
return
it
->
second
.
creator_
(
grad_op_type
,
inputs
,
outputs
,
op
->
Attrs
());
}
}
// namespace framework
...
...
paddle/framework/grad_op_builder_test.cc
浏览文件 @
4c9699c5
...
...
@@ -8,14 +8,6 @@ USE_OP(add_two);
namespace
paddle
{
namespace
framework
{
class
NOP
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
MutiInOutOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
MutiInOutOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
...
...
@@ -52,8 +44,8 @@ TEST(GradOpBuilder, AddTwo) {
"add_two"
,
{{
"X"
,
{
"x"
}},
{
"Y"
,
{
"y"
}}},
{{
"Out"
,
{
"out"
}}},
{}));
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_add_op
=
f
::
OpRegistry
::
CreateGradOp
(
*
add_op
);
EXPECT_EQ
(
grad_add_op
->
inputs_
.
size
(),
4UL
);
EXPECT_EQ
(
grad_add_op
->
outputs_
.
size
(),
2UL
);
EXPECT_EQ
(
grad_add_op
->
Inputs
()
.
size
(),
4UL
);
EXPECT_EQ
(
grad_add_op
->
Outputs
()
.
size
(),
2UL
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"X"
),
"x"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"Y"
),
"y"
);
EXPECT_EQ
(
grad_add_op
->
Input
(
"Out"
),
"out"
);
...
...
@@ -62,10 +54,8 @@ TEST(GradOpBuilder, AddTwo) {
EXPECT_EQ
(
grad_add_op
->
Output
(
f
::
GradVarName
(
"Y"
)),
f
::
GradVarName
(
"y"
));
}
REGISTER_OP
(
mult_io
,
f
::
NOP
,
f
::
MutiInOutOpMaker
);
REGISTER_GRADIENT_OP
(
mult_io
,
mult_io_grad
,
f
::
NOP
);
REGISTER_OP
(
io_ignored
,
f
::
NOP
,
f
::
IOIgnoredOpMaker
);
REGISTER_GRADIENT_OP
(
io_ignored
,
io_ignored_grad
,
f
::
NOP
);
REGISTER_OP
(
mult_io
,
f
::
NOP
,
f
::
MutiInOutOpMaker
,
mult_io_grad
,
f
::
NOP
);
REGISTER_OP
(
io_ignored
,
f
::
NOP
,
f
::
IOIgnoredOpMaker
,
io_ignored_grad
,
f
::
NOP
);
TEST
(
GradOpBuilder
,
MutiInOut
)
{
std
::
shared_ptr
<
f
::
OperatorBase
>
test_op
(
f
::
OpRegistry
::
CreateOp
(
...
...
@@ -76,7 +66,7 @@ TEST(GradOpBuilder, MutiInOut) {
std
::
shared_ptr
<
f
::
OperatorBase
>
grad_test_op
=
f
::
OpRegistry
::
CreateGradOp
(
*
test_op
);
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
3UL
+
2UL
+
2UL
);
ASSERT_EQ
(
grad_test_op
->
Inputs
()
.
size
(),
3UL
+
2UL
+
2UL
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In2_mult"
),
std
::
vector
<
std
::
string
>
({
"in2_1"
,
"in2_2"
,
"in2_3"
}));
...
...
@@ -90,7 +80,7 @@ TEST(GradOpBuilder, MutiInOut) {
std
::
vector
<
std
::
string
>
(
{
f
::
GradVarName
(
"out2_1"
),
f
::
GradVarName
(
"out2_2"
)}));
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
3UL
);
ASSERT_EQ
(
grad_test_op
->
Outputs
()
.
size
(),
3UL
);
EXPECT_EQ
(
grad_test_op
->
Output
(
f
::
GradVarName
(
"In1"
)),
f
::
GradVarName
(
"in1"
));
EXPECT_EQ
(
grad_test_op
->
Outputs
(
f
::
GradVarName
(
"In2_mult"
)),
std
::
vector
<
std
::
string
>
({
f
::
GradVarName
(
"in2_1"
),
...
...
@@ -109,7 +99,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
f
::
OpRegistry
::
CreateGradOp
(
*
test_op
);
// 'In2' and 'Out2' are ignored in gradient calculating
ASSERT_EQ
(
grad_test_op
->
inputs_
.
size
(),
2UL
+
1UL
+
2UL
);
ASSERT_EQ
(
grad_test_op
->
Inputs
()
.
size
(),
2UL
+
1UL
+
2UL
);
EXPECT_EQ
(
grad_test_op
->
Input
(
"In1"
),
"in1"
);
EXPECT_EQ
(
grad_test_op
->
Inputs
(
"In3_mult"
),
std
::
vector
<
std
::
string
>
({
"in3_1"
,
"in3_2"
}));
...
...
@@ -121,7 +111,7 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
EXPECT_EQ
(
grad_test_op
->
Input
(
f
::
GradVarName
(
"Out2"
)),
f
::
GradVarName
(
"out2"
));
ASSERT_EQ
(
grad_test_op
->
outputs_
.
size
(),
3UL
);
ASSERT_EQ
(
grad_test_op
->
Outputs
()
.
size
(),
3UL
);
EXPECT_EQ
(
grad_test_op
->
Output
(
f
::
GradVarName
(
"In1"
)),
f
::
GradVarName
(
"in1"
));
EXPECT_EQ
(
grad_test_op
->
Outputs
(
f
::
GradVarName
(
"In2_mult"
)),
std
::
vector
<
std
::
string
>
(
...
...
paddle/framework/op_registry.h
浏览文件 @
4c9699c5
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <algorithm>
#include <atomic>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include "paddle/framework/attribute.h"
...
...
@@ -119,6 +120,12 @@ class OpProtoAndCheckerMaker {
bool
validated_
{
false
};
};
class
NOPMaker
:
public
OpProtoAndCheckerMaker
{
public:
NOPMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{}
};
class
OpRegistry
{
using
VarNameMap
=
OperatorBase
::
VarNameMap
;
using
OpCreator
=
std
::
function
<
OperatorBase
*
(
...
...
@@ -126,46 +133,56 @@ class OpRegistry {
const
VarNameMap
&
/*outputs*/
,
const
AttributeMap
&
/*attrs*/
)
>
;
public:
template
<
typename
OpType
,
typename
ProtoMakerType
>
static
void
RegisterOp
(
const
std
::
string
&
op_type
)
{
op_creators
()[
op_type
]
=
[](
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
{
return
new
OpType
(
type
,
inputs
,
outputs
,
attrs
);
};
OpAttrChecker
&
op_checker
=
op_checkers
()[
op_type
];
OpProto
&
op_proto
=
OpProtos
()[
op_type
];
auto
maker
=
ProtoMakerType
(
&
op_proto
,
&
op_checker
);
maker
.
Validate
();
op_proto
.
set_type
(
op_type
);
PADDLE_ENFORCE
(
op_proto
.
IsInitialized
(),
"Fail to initialize %s's OpProto, because %s is not initialized"
,
op_type
,
op_proto
.
InitializationErrorString
());
}
struct
OpInfo
{
OpCreator
creator_
;
std
::
string
grad_op_type_
;
OpProto
*
proto_
;
OpAttrChecker
*
checker_
;
};
template
<
typename
GradOpType
>
static
void
RegisterGradOp
(
const
std
::
string
&
op_type
,
const
std
::
string
&
grad_op_type
)
{
op_creators
()[
grad_op_type
]
=
[](
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
{
return
new
GradOpType
(
type
,
inputs
,
outputs
,
attrs
);
template
<
typename
OpType
,
typename
ProtoMakerType
,
typename
GradOpType
>
static
void
RegisterOp
(
const
std
::
string
&
op_type
,
const
std
::
string
&
grad_op_type
)
{
PADDLE_ENFORCE
(
op_info_map
().
count
(
op_type
)
==
0
,
"'%s' is registered more than once."
,
op_type
);
OpInfo
op_info
;
op_info
.
creator_
=
[](
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
{
return
new
OpType
(
type
,
inputs
,
outputs
,
attrs
);
};
grad_ops
()[
op_type
]
=
grad_op_type
;
op_info
.
grad_op_type_
=
grad_op_type
;
if
(
std
::
type_index
(
typeid
(
ProtoMakerType
))
!=
std
::
type_index
(
typeid
(
NOPMaker
)))
{
op_info
.
proto_
=
new
OpProto
;
op_info
.
checker_
=
new
OpAttrChecker
;
auto
maker
=
ProtoMakerType
(
op_info
.
proto_
,
op_info
.
checker_
);
maker
.
Validate
();
op_info
.
proto_
->
set_type
(
op_type
);
PADDLE_ENFORCE
(
op_info
.
proto_
->
IsInitialized
(),
"Fail to initialize %s's OpProto, because %s is not initialized"
,
op_type
,
op_info
.
proto_
->
InitializationErrorString
());
}
else
{
op_info
.
proto_
=
nullptr
;
op_info
.
checker_
=
nullptr
;
}
op_info_map
().
insert
(
std
::
make_pair
(
op_type
,
op_info
));
// register gradient op
if
(
!
grad_op_type
.
empty
())
{
RegisterOp
<
GradOpType
,
NOPMaker
,
NOP
>
(
grad_op_type
,
""
);
}
}
static
std
::
shared_ptr
<
OperatorBase
>
CreateOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
AttributeMap
attrs
)
{
auto
op_create_it
=
op_creators
().
find
(
type
);
PADDLE_ENFORCE
(
op_create_it
!=
op_creators
().
end
(),
"Operator %s cannot be found."
,
type
);
op_checkers
().
at
(
type
).
Check
(
attrs
);
auto
op
=
op_create_it
->
second
(
type
,
inputs
,
outputs
,
attrs
);
auto
it
=
op_info_map
().
find
(
type
);
PADDLE_ENFORCE
(
it
!=
op_info_map
().
end
(),
"Operator '%s' has not been registered."
,
type
);
it
->
second
.
checker_
->
Check
(
attrs
);
auto
op
=
it
->
second
.
creator_
(
type
,
inputs
,
outputs
,
attrs
);
return
std
::
shared_ptr
<
OperatorBase
>
(
op
);
}
...
...
@@ -200,49 +217,32 @@ class OpRegistry {
return
grad_op
;
}
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>&
grad_ops
()
{
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>
grad_ops_
;
return
grad_ops_
;
}
static
std
::
unordered_map
<
std
::
string
,
OpCreator
>&
op_creators
()
{
static
std
::
unordered_map
<
std
::
string
,
OpCreator
>
op_creators_
;
return
op_creators_
;
}
private:
static
std
::
unordered_map
<
std
::
string
,
OpAttrChecker
>&
op_checkers
()
{
static
std
::
unordered_map
<
std
::
string
,
OpAttrChecker
>
op_checkers_
;
return
op_checkers_
;
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>&
op_info_map
()
{
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>
op_info_map_
;
return
op_info_map_
;
}
};
class
Registrar
{
public:
// In our design, various kinds of classes, e.g., operators and kernels,
have
//
their corresponding registry and registrar. The action of registration is
//
in the constructor of a global registrar variable, which, however, are not
//
used in the code that calls package framework, and would be removed from
//
the generated binary file by the linker. To avoid such removal, we add
//
Touch to all registrar classes and make USE_OP macros to call this
// method. So, as long as the callee code calls USE_OP, the global
// In our design, various kinds of classes, e.g., operators and kernels,
//
have their corresponding registry and registrar. The action of
//
registration is in the constructor of a global registrar variable, which,
//
however, are not used in the code that calls package framework, and would
//
be removed from the generated binary file by the linker. To avoid such
//
removal, we add Touch to all registrar classes and make USE_OP macros to
//
call this
method. So, as long as the callee code calls USE_OP, the global
// registrar variable won't be removed by the linker.
void
Touch
()
{}
};
template
<
typename
OpType
,
typename
ProtoMakerType
>
template
<
typename
OpType
,
typename
ProtoMakerType
,
typename
GradOpType
>
class
OpRegistrar
:
public
Registrar
{
public:
explicit
OpRegistrar
(
const
char
*
op_type
)
{
OpRegistry
::
RegisterOp
<
OpType
,
ProtoMakerType
>
(
op_type
);
}
};
template
<
typename
GradOpType
>
class
GradOpRegistrar
:
public
Registrar
{
public:
GradOpRegistrar
(
const
char
*
op_type
,
const
char
*
grad_op_type
)
{
OpRegistry
::
RegisterGradOp
<
GradOpType
>
(
op_type
,
grad_op_type
);
explicit
OpRegistrar
(
const
char
*
op_type
)
{
OpRegistrar
(
op_type
,
""
);
}
OpRegistrar
(
const
char
*
op_type
,
const
char
*
grad_op_type
)
{
OpRegistry
::
RegisterOp
<
OpType
,
ProtoMakerType
,
GradOpType
>
(
op_type
,
grad_op_type
);
}
};
...
...
@@ -268,30 +268,20 @@ class OpKernelRegistrar : public Registrar {
/**
* Macro to register Operator.
*/
#define REGISTER_OP(op_type, op_class, op_maker_class) \
#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \
grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \
static ::paddle::framework::OpRegistrar<op_class, op_maker_class> \
__op_registrar_##op_type##__(#op_type); \
static ::paddle::framework::OpRegistrar<op_class, op_maker_class, \
grad_op_class> \
__op_registrar_##op_type##__(#op_type, #grad_op_type); \
int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \
return 0; \
}
/**
* Macro to register Gradient Operator.
*/
#define REGISTER_GRADIENT_OP(op_type, grad_op_type, grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##op_type##_##grad_op_type, \
"REGISTER_GRADIENT_OP must be called in global namespace"); \
static ::paddle::framework::GradOpRegistrar<grad_op_class> \
__op_gradient_registrar_##op_type##_##grad_op_type##__(#op_type, \
#grad_op_type); \
int TouchOpGradientRegistrar_##op_type() { \
__op_gradient_registrar_##op_type##_##grad_op_type##__.Touch(); \
return 0; \
}
#define REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) \
REGISTER_OP(op_type, op_class, op_maker_class, , ::paddle::framework::NOP)
/**
* Macro to register OperatorKernel.
...
...
@@ -307,14 +297,6 @@ class OpKernelRegistrar : public Registrar {
return 0; \
}
/**
* Macro to Forbid user register Gradient Operator.
*/
#define NO_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##op_type##_##op_type##_grad, \
"NO_GRADIENT must be called in global namespace")
#define REGISTER_OP_GPU_KERNEL(op_type, ...) \
REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
...
...
@@ -333,23 +315,6 @@ class OpKernelRegistrar : public Registrar {
static int use_op_itself_##op_type##_ __attribute__((unused)) = \
TouchOpRegistrar_##op_type()
// TODO(fengjiayi): Most ops' gradient op have not been compeleted. So we use
// `NO_GRAD` to disable micro USE_OP_GRADIENT(op_type). Otherwise the code can't
// be compiled. `NO_GRAD` should be removed after all gradient ops are
// compeleted.
#define NO_GRAD
#ifndef NO_GRAD
#define USE_OP_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_gradient_##op_type, \
"USE_OP_GRADIENT must be called in global namespace"); \
extern int TouchOpGradientRegistrar_##op_type(); \
static int use_op_gradient_##op_type##_ __attribute__((unused)) = \
TouchOpGradientRegistrar_##op_type()
#else
#define USE_OP_GRADIENT(op_type)
#endif
#define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \
...
...
@@ -369,18 +334,13 @@ class OpKernelRegistrar : public Registrar {
USE_OP_DEVICE_KERNEL(op_type, GPU)
#endif
#define USE_NO_GRAD_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_KERNEL(op_type)
#define USE_CPU_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_GRADIENT(op_type)
#define USE_CPU_ONLY_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU);
#define USE_OP(op_type)
\
USE_
NO_GRAD_OP
(op_type); \
USE_OP_
GRADIENT
(op_type)
#define USE_OP(op_type) \
USE_
OP_ITSELF
(op_type); \
USE_OP_
KERNEL
(op_type)
}
// namespace framework
}
// namespace paddle
paddle/framework/op_registry_test.cc
浏览文件 @
4c9699c5
...
...
@@ -59,11 +59,10 @@ static void BuildVar(const std::string& param_name,
var
->
add_arguments
(
arg_name
);
}
}
REGISTER_OP
(
cos_sim
,
paddle
::
framework
::
CosineOp
,
paddle
::
framework
::
CosineOpProtoAndCheckerMaker
);
REGISTER_OP
(
my_test_op
,
paddle
::
framework
::
MyTestOp
,
paddle
::
framework
::
MyTestOpProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
cos_sim
,
paddle
::
framework
::
CosineOp
,
paddle
::
framework
::
CosineOpProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
my_test_op
,
paddle
::
framework
::
MyTestOp
,
paddle
::
framework
::
MyTestOpProtoAndCheckerMaker
);
TEST
(
OpRegistry
,
CreateOp
)
{
paddle
::
framework
::
OpDesc
op_desc
;
...
...
paddle/framework/operator.cc
浏览文件 @
4c9699c5
...
...
@@ -33,14 +33,6 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
}
#endif
static
std
::
unordered_map
<
std
::
string
,
OpProto
>*
g_op_protos
=
nullptr
;
std
::
unordered_map
<
std
::
string
,
OpProto
>&
OpProtos
()
{
if
(
g_op_protos
==
nullptr
)
{
g_op_protos
=
new
std
::
unordered_map
<
std
::
string
,
OpProto
>
();
}
return
*
g_op_protos
;
}
const
std
::
string
&
OperatorBase
::
Input
(
const
std
::
string
&
name
)
const
{
auto
&
ins
=
Inputs
(
name
);
PADDLE_ENFORCE_EQ
(
ins
.
size
(),
1UL
,
...
...
@@ -149,14 +141,18 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
}
return
ret_val
;
}
auto
it
=
Op
Protos
().
find
(
type_
);
auto
it
=
Op
Registry
::
op_info_map
().
find
(
type_
);
PADDLE_ENFORCE
(
it
!=
Op
Protos
().
end
(),
it
!=
Op
Registry
::
op_info_map
().
end
(),
"Operator %s not registered, cannot figure out intermediate outputs"
,
type_
);
PADDLE_ENFORCE
(
it
->
second
.
proto_
!=
nullptr
,
"Operator %s has no OpProto, cannot figure out intermediate outputs"
,
type_
);
// get all OpProto::Var for outputs
for
(
auto
&
o
:
it
->
second
.
outputs
())
{
for
(
auto
&
o
:
it
->
second
.
proto_
->
outputs
())
{
// ignore all intermediate output
if
(
o
.
intermediate
())
continue
;
auto
out
=
outputs_
.
find
(
o
.
name
());
...
...
paddle/framework/operator.h
浏览文件 @
4c9699c5
...
...
@@ -50,8 +50,6 @@ inline std::string GradVarName(const std::string& var_name) {
return
var_name
+
kGradVarSuffix
;
}
extern
std
::
unordered_map
<
std
::
string
,
OpProto
>&
OpProtos
();
class
OperatorBase
;
class
InferShapeContext
;
class
ExecutionContext
;
...
...
@@ -99,6 +97,8 @@ class OperatorBase {
/// rename inputs outputs name
void
Rename
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
);
const
VarNameMap
&
Inputs
()
const
{
return
inputs_
;
}
const
VarNameMap
&
Outputs
()
const
{
return
outputs_
;
}
//! Get a input with argument's name described in `op_proto`
const
std
::
string
&
Input
(
const
std
::
string
&
name
)
const
;
//! Get a input which has multiple variables.
...
...
@@ -112,10 +112,11 @@ class OperatorBase {
virtual
std
::
vector
<
std
::
string
>
OutputVars
(
bool
has_intermediate
)
const
;
std
::
string
Type
()
const
{
return
type_
;
}
const
std
::
string
&
Type
()
const
{
return
type_
;
}
void
SetType
(
const
std
::
string
&
type
)
{
type_
=
type
;
}
const
AttributeMap
&
Attrs
()
const
{
return
attrs_
;
}
p
ublic
:
p
rotected
:
std
::
string
type_
;
// NOTE: in case of OpGrad, inputs_ contains:
// I (Inputs)
...
...
@@ -129,6 +130,14 @@ class OperatorBase {
AttributeMap
attrs_
;
};
class
NOP
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{}
};
class
InferShapeContext
{
public:
InferShapeContext
(
const
OperatorBase
&
op
,
const
Scope
&
scope
)
...
...
@@ -210,7 +219,7 @@ class InferShapeContext {
[
&
](
const
std
::
string
&
sub_name
)
{
auto
var
=
scope_
.
FindVar
(
sub_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"MultiOutput(%s:%s) should not be nullptr"
,
name
,
var
,
"MultiOutput(%s:%s) should not be nullptr
.
"
,
name
,
sub_name
);
return
var
->
GetMutable
<
T
>
();
});
...
...
paddle/framework/operator_test.cc
浏览文件 @
4c9699c5
...
...
@@ -65,8 +65,9 @@ static void BuildVar(const std::string& param_name,
}
}
REGISTER_OP
(
test_operator
,
paddle
::
framework
::
OpWithoutKernelTest
,
paddle
::
framework
::
OpeWithoutKernelTestProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
test_operator
,
paddle
::
framework
::
OpWithoutKernelTest
,
paddle
::
framework
::
OpeWithoutKernelTestProtoAndCheckerMaker
);
TEST
(
OperatorBase
,
all
)
{
paddle
::
framework
::
OpDesc
op_desc
;
...
...
@@ -184,8 +185,9 @@ class CPUKernalMultiInputsTest : public OpKernel {
}
// namespace framework
}
// namespace paddle
REGISTER_OP
(
op_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
op_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestProtoAndCheckerMaker
);
REGISTER_OP_CPU_KERNEL
(
op_with_kernel
,
paddle
::
framework
::
CPUKernelTest
<
float
,
float
>
);
...
...
@@ -210,8 +212,9 @@ TEST(OpKernel, all) {
ASSERT_EQ
(
paddle
::
framework
::
cpu_kernel_run_num
,
1
);
}
REGISTER_OP
(
op_multi_inputs_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestMultiInputsProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
op_multi_inputs_with_kernel
,
paddle
::
framework
::
OpWithKernelTest
,
paddle
::
framework
::
OpKernelTestMultiInputsProtoAndCheckerMaker
);
REGISTER_OP_CPU_KERNEL
(
op_multi_inputs_with_kernel
,
paddle
::
framework
::
CPUKernalMultiInputsTest
);
...
...
paddle/framework/pybind.cc
浏览文件 @
4c9699c5
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h"
#include "paddle/string/to_string.h"
...
...
@@ -30,8 +31,8 @@ limitations under the License. */
namespace
py
=
pybind11
;
USE_OP
(
add_two
);
USE_CPU_OP
(
onehot_cross_entropy
);
USE_
NO_GRAD_
OP
(
sgd
);
USE_CPU_O
NLY_O
P
(
onehot_cross_entropy
);
USE_OP
(
sgd
);
USE_OP
(
mul
);
USE_OP
(
mean
);
USE_OP
(
sigmoid
);
...
...
@@ -53,15 +54,15 @@ void ExposeOperator(ClassType &m) {
.
def
(
"run"
,
&
ClassType
::
type
::
Run
)
.
def
(
"type"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
string
{
return
op
.
type_
;
return
op
.
Type
()
;
})
.
def
(
"outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
{
return
op
.
outputs_
;
return
op
.
Outputs
()
;
})
.
def
(
"inputs"
,
[](
const
typename
ClassType
::
type
&
op
)
{
return
op
.
inputs_
;
})
[](
const
typename
ClassType
::
type
&
op
)
{
return
op
.
Inputs
()
;
})
.
def
(
"__str__"
,
&
ClassType
::
type
::
DebugString
)
.
def
(
"no_intermediate_outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
{
...
...
@@ -160,13 +161,16 @@ All parameter, weight, gradient are variables in Paddle.
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
m
.
def
(
"get_all_op_protos"
,
[]()
->
std
::
vector
<
py
::
bytes
>
{
auto
&
protos
=
OpProtos
();
auto
&
op_info_map
=
OpRegistry
::
op_info_map
();
std
::
vector
<
py
::
bytes
>
ret_values
;
for
(
auto
it
=
protos
.
begin
();
it
!=
protos
.
end
();
++
it
)
{
PADDLE_ENFORCE
(
it
->
second
.
IsInitialized
(),
"OpProto must all be initialized"
);
for
(
auto
it
=
op_info_map
.
begin
();
it
!=
op_info_map
.
end
();
++
it
)
{
const
OpProto
*
proto
=
it
->
second
.
proto_
;
if
(
proto
==
nullptr
)
{
continue
;
}
PADDLE_ENFORCE
(
proto
->
IsInitialized
(),
"OpProto must all be initialized"
);
std
::
string
str
;
PADDLE_ENFORCE
(
it
->
second
.
SerializeToString
(
&
str
),
PADDLE_ENFORCE
(
proto
->
SerializeToString
(
&
str
),
"Serialize OpProto Error. This could be a bug of Paddle."
);
ret_values
.
push_back
(
py
::
bytes
(
str
));
}
...
...
@@ -229,7 +233,7 @@ All parameter, weight, gradient are variables in Paddle.
net
.
def_static
(
"create"
,
[]()
->
std
::
shared_ptr
<
operators
::
NetOp
>
{
auto
retv
=
std
::
make_shared
<
operators
::
NetOp
>
();
retv
->
type_
=
"plain_net"
;
retv
->
SetType
(
"plain_net"
)
;
return
retv
;
})
.
def
(
"add_op"
,
&
operators
::
NetOp
::
AddOp
)
...
...
@@ -238,6 +242,11 @@ All parameter, weight, gradient are variables in Paddle.
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
net
));
})
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
std
::
shared_ptr
<
operators
::
RecurrentOp
>
&
rnn
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
rnn
));
})
.
def
(
"complete_add_op"
,
&
operators
::
NetOp
::
CompleteAddOp
)
.
def
(
"complete_add_op"
,
[](
std
::
shared_ptr
<
operators
::
NetOp
>
&
self
)
{
self
->
CompleteAddOp
();
...
...
@@ -245,6 +254,29 @@ All parameter, weight, gradient are variables in Paddle.
ExposeOperator
(
net
);
// recurrent_op
py
::
class_
<
operators
::
RecurrentOp
,
std
::
shared_ptr
<
operators
::
RecurrentOp
>>
rnn
(
m
,
"RecurrentOp"
);
rnn
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
->
std
::
shared_ptr
<
operators
::
RecurrentOp
>
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
auto
rnn_op
=
OpRegistry
::
CreateOp
(
desc
);
return
std
::
dynamic_pointer_cast
<
operators
::
RecurrentOp
>
(
rnn_op
);
})
.
def
(
"set_stepnet"
,
[](
operators
::
RecurrentOp
&
self
,
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
set_stepnet
(
net
);
});
ExposeOperator
(
rnn
);
m
.
def
(
"unique_integer"
,
UniqueIntegerGenerator
);
m
.
def
(
"is_compile_gpu"
,
IsCompileGPU
);
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
4c9699c5
...
...
@@ -44,6 +44,8 @@ endfunction()
add_subdirectory
(
math
)
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
)
cc_library
(
net_op SRCS net_op.cc DEPS op_registry
)
cc_test
(
net_op_test SRCS net_op_test.cc DEPS net_op
)
...
...
@@ -64,6 +66,5 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library
(
recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor op_registry operator net_op
)
cc_test
(
recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op
)
op_library
(
uniform_random_op
SRCS uniform_random_op.cc uniform_random_op.cu
)
paddle/operators/add_op.cc
浏览文件 @
4c9699c5
...
...
@@ -57,8 +57,7 @@ class AddOpGrad : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
add_two
,
ops
::
AddOp
,
ops
::
AddOpMaker
);
REGISTER_GRADIENT_OP
(
add_two
,
add_two_grad
,
ops
::
AddOpGrad
);
REGISTER_OP
(
add_two
,
ops
::
AddOp
,
ops
::
AddOpMaker
,
add_two_grad
,
ops
::
AddOpGrad
);
REGISTER_OP_CPU_KERNEL
(
add_two
,
ops
::
AddKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/cross_entropy_op.cc
浏览文件 @
4c9699c5
...
...
@@ -68,12 +68,11 @@ OnehotCrossEntropy Operator.
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOp
,
ops
::
OnehotCrossEntropyOpMaker
);
ops
::
OnehotCrossEntropyOpMaker
,
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
onehot_cross_entropy
,
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/fill_zeros_like_op.cc
浏览文件 @
4c9699c5
...
...
@@ -46,7 +46,8 @@ The output will have the same size with input.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
fill_zeros_like
,
ops
::
FillZerosLikeOp
,
ops
::
FillZerosLikeOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
fill_zeros_like
,
ops
::
FillZerosLikeOp
,
ops
::
FillZerosLikeOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fill_zeros_like
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/gather.h
浏览文件 @
4c9699c5
...
...
@@ -29,7 +29,7 @@ void CPUGather(const T* params, const int* indices, const int slice_size,
const
int
index_size
,
T
*
output
)
{
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
size_
t
i
=
0
;
i
<
index_size
;
++
i
)
{
for
(
in
t
i
=
0
;
i
<
index_size
;
++
i
)
{
int
index_
=
indices
[
i
];
memcpy
(
output
+
i
*
slice_size
,
params
+
index_
*
slice_size
,
slice_bytes
);
}
...
...
@@ -60,7 +60,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src,
// slice size
int
slice_size
=
1
;
for
(
size_
t
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
for
(
in
t
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
// Gathering
if
(
platform
::
is_cpu_place
(
place
))
{
...
...
paddle/operators/gather_test.cc
浏览文件 @
4c9699c5
...
...
@@ -35,7 +35,7 @@ TEST(Gather, GatherData) {
p_src
=
src
->
mutable_data
<
int
>
(
make_ddim
({
3
,
4
}),
CPUPlace
());
p_index
=
index
->
mutable_data
<
int
>
(
make_ddim
({
2
}),
CPUPlace
());
for
(
size_
t
i
=
0
;
i
<
12
;
++
i
)
p_src
[
i
]
=
i
;
for
(
in
t
i
=
0
;
i
<
12
;
++
i
)
p_src
[
i
]
=
i
;
p_index
[
0
]
=
1
;
p_index
[
1
]
=
0
;
...
...
@@ -43,6 +43,6 @@ TEST(Gather, GatherData) {
Gather
<
int
>
(
CPUPlace
(),
src
,
index
,
output
);
for
(
size_
t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
+
4
);
for
(
size_
t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
-
4
);
for
(
in
t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
+
4
);
for
(
in
t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
-
4
);
}
paddle/operators/gaussian_random_op.cc
浏览文件 @
4c9699c5
...
...
@@ -81,5 +81,6 @@ Use to initialize tensor with gaussian random generator.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
gaussian_random
,
ops
::
GaussianRandomOp
,
ops
::
GaussianRandomOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
gaussian_random
,
ops
::
GaussianRandomOp
,
ops
::
GaussianRandomOpMaker
);
REGISTER_OP_CPU_KERNEL
(
gaussian_random
,
ops
::
GaussianRandomKernel
<
float
>
);
paddle/operators/math/CMakeLists.txt
浏览文件 @
4c9699c5
if
(
WITH_MKLML
)
set
(
BLAS_LIB mklml
)
else
()
set
(
BLAS_LIB cblas
)
endif
()
if
(
WITH_GPU
)
nv_library
(
math_function SRCS math_function.cc math_function.cu DEPS
${
BLAS_LIB
}
device_context
)
nv_library
(
math_function SRCS math_function.cc math_function.cu DEPS
cblas
device_context
)
else
()
cc_library
(
math_function SRCS math_function.cc DEPS
${
BLAS_LIB
}
device_context
)
cc_library
(
math_function SRCS math_function.cc DEPS
cblas
device_context
)
endif
()
nv_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
paddle/operators/mean_op.cc
浏览文件 @
4c9699c5
...
...
@@ -54,9 +54,8 @@ class MeanGradOp : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
mean
,
ops
::
MeanOp
,
ops
::
MeanOpMaker
);
REGISTER_OP
(
mean
,
ops
::
MeanOp
,
ops
::
MeanOpMaker
,
mean_grad
,
ops
::
MeanGradOp
);
REGISTER_OP_CPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
mean
,
mean_grad
,
ops
::
MeanGradOp
);
REGISTER_OP_CPU_KERNEL
(
mean_grad
,
ops
::
MeanGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/mul_op.cc
浏览文件 @
4c9699c5
...
...
@@ -85,9 +85,7 @@ class MulOpGrad : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
mul
,
ops
::
MulOp
,
ops
::
MulOpMaker
);
REGISTER_GRADIENT_OP
(
mul
,
mul_grad
,
ops
::
MulOpGrad
);
REGISTER_OP
(
mul
,
ops
::
MulOp
,
ops
::
MulOpMaker
,
mul_grad
,
ops
::
MulOpGrad
);
REGISTER_OP_CPU_KERNEL
(
mul
,
ops
::
MulKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
mul_grad
,
ops
::
MulGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/net_op.cc
浏览文件 @
4c9699c5
...
...
@@ -29,7 +29,7 @@ void NetOp::CompleteAddOp(bool calc) {
std
::
set
<
std
::
string
>
input_set
;
std
::
set
<
std
::
string
>
output_set
;
for
(
auto
&
op
:
ops_
)
{
for
(
auto
&
ipt
:
op
->
inputs_
)
{
for
(
auto
&
ipt
:
op
->
Inputs
()
)
{
for
(
auto
&
var_name
:
ipt
.
second
)
{
if
(
!
Contains
(
output_set
,
var_name
))
{
// Not other op's output
input_set
.
insert
(
var_name
);
...
...
@@ -39,7 +39,7 @@ void NetOp::CompleteAddOp(bool calc) {
}
}
for
(
auto
&
opt
:
op
->
outputs_
)
{
for
(
auto
&
opt
:
op
->
Outputs
()
)
{
for
(
auto
&
var_name
:
opt
.
second
)
{
output_set
.
insert
(
var_name
);
}
...
...
paddle/operators/net_op_test.cc
浏览文件 @
4c9699c5
...
...
@@ -20,13 +20,6 @@ class TestOp : public framework::OperatorBase {
}
};
class
EmptyOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
void
InferShape
(
const
Scope
&
scope
)
const
override
{}
void
Run
(
const
Scope
&
scope
,
const
DeviceContext
&
dev_ctx
)
const
override
{}
};
template
<
typename
T
>
void
AssertSameVectorWithoutOrder
(
const
std
::
vector
<
T
>&
expected
,
const
std
::
vector
<
T
>&
actual
)
{
...
...
@@ -56,8 +49,8 @@ TEST(OpKernel, all) {
net
->
CompleteAddOp
();
AssertSameVectorWithoutOrder
({
"x"
,
"w1"
,
"b1"
,
"w2"
,
"b2"
},
net
->
inputs_
.
at
(
NetOp
::
kAll
));
AssertSameVectorWithoutOrder
({
"y"
,
"z"
},
net
->
outputs_
.
at
(
NetOp
::
kAll
));
net
->
Inputs
(
NetOp
::
kAll
));
AssertSameVectorWithoutOrder
({
"y"
,
"z"
},
net
->
Outputs
(
NetOp
::
kAll
));
auto
final_outs
=
net
->
OutputVars
(
false
);
...
...
@@ -67,9 +60,9 @@ TEST(OpKernel, all) {
TEST
(
NetOp
,
insert_op
)
{
NetOp
net
;
auto
op1
=
std
::
shared_ptr
<
EmptyOp
>
(
new
EmptyOp
(
"empty"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
auto
op1
=
std
::
shared_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
(
"empty"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
net
.
AddOp
(
op1
);
net
.
InsertOp
(
0
,
op1
);
ASSERT_EQ
(
2UL
,
net
.
ops_
.
size
());
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
4c9699c5
...
...
@@ -36,15 +36,13 @@ void RecurrentAlgorithm::InferShape(const Scope& scope) const {
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
InitMemories
(
step_scopes
[
0
],
true
/*infer_shape_mode*/
);
Variable
*
net
=
scope
.
FindVar
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net
!=
nullptr
,
"failed to get step net"
);
for
(
size_t
i
=
0
;
i
<
seq_len_
;
i
++
)
{
if
(
i
>
0
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
i
,
-
1
,
true
/*infer_shape_mode*/
);
}
net
->
GetMutable
<
NetOp
>
(
)
->
InferShape
(
*
step_scopes
[
i
]);
(
*
stepnet_
)
->
InferShape
(
*
step_scopes
[
i
]);
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
...
...
@@ -56,7 +54,6 @@ void RecurrentAlgorithm::Run(const Scope& scope,
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
InitMemories
(
step_scopes
[
0
],
false
/*infer_shape_mode*/
);
Variable
*
net
=
scope
.
FindVar
(
arg_
->
step_net
);
for
(
size_t
step_id
=
0
;
step_id
<
seq_len_
;
step_id
++
)
{
// create output alias variables
...
...
@@ -64,7 +61,7 @@ void RecurrentAlgorithm::Run(const Scope& scope,
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
-
1
,
false
/*infer_shape_mode*/
);
}
net
->
GetMutable
<
NetOp
>
(
)
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
(
*
stepnet_
)
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
...
...
@@ -78,18 +75,16 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
auto
step_scopes
=
step_scopes_var
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
// Now all variables in scope must be created outside of op.
auto
net_var
=
scope
.
FindVar
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net_var
!=
nullptr
,
"no stepnet called %s in scope"
,
arg_
->
step_net
);
auto
net_op
=
net_var
->
GetMutable
<
NetOp
>
();
PADDLE_ENFORCE
(
!
net_op
->
outputs_
.
empty
(),
"net_op has no outputs"
);
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"stepnet_ op has no outputs"
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"net_op has no outputs"
);
if
(
seq_len_
>
step_scopes
->
size
())
{
for
(
size_t
i
=
step_scopes
->
size
();
i
<
seq_len_
;
++
i
)
{
auto
&
step_scope
=
scope
.
NewScope
();
// create step net's temp inputs
for
(
auto
&
input
:
net_op
->
inputs_
)
{
for
(
auto
&
input
:
(
*
stepnet_
)
->
Inputs
()
)
{
// the weight are located in parent scope
for
(
auto
&
var_name
:
input
.
second
)
{
if
(
!
step_scope
.
FindVar
(
var_name
))
{
...
...
@@ -98,7 +93,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
}
}
// create stepnet's outputs
for
(
const
auto
&
output
:
net_op
->
outputs_
)
{
for
(
const
auto
&
output
:
(
*
stepnet_
)
->
Outputs
()
)
{
for
(
auto
&
var_name
:
output
.
second
)
{
step_scope
.
NewVar
(
var_name
);
}
...
...
@@ -140,9 +135,8 @@ RecurrentOp::RecurrentOp(const std::string& type,
const
framework
::
OperatorBase
::
VarNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{
std
::
unique_ptr
<
rnn
::
Argument
>
arg
(
new
rnn
::
Argument
());
rnn
::
InitArgument
(
kArgName
,
arg
.
get
(),
*
this
);
alg_
.
Init
(
std
::
move
(
arg
));
rnn
::
InitArgument
(
kArgName
,
&
arg_
,
*
this
);
alg_
.
Init
(
&
arg_
,
&
stepnet_
);
}
class
RecurrentAlgorithmProtoAndCheckerMaker
...
...
@@ -158,7 +152,6 @@ class RecurrentAlgorithmProtoAndCheckerMaker
.
AsDuplicable
();
AddInput
(
name
.
boot_memories
,
"variables to initialize memories."
)
.
AsDuplicable
();
AddInput
(
name
.
step_net
,
"network shared by all steps."
);
AddOutput
(
name
.
outlinks
,
"the outputs that need to concated for all steps."
)
.
AsDuplicable
();
...
...
@@ -180,14 +173,12 @@ void RecurrentGradientAlgorithm::Run(
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
false
/*infer_shape_mode*/
);
Variable
*
net
=
scope
.
FindVar
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net
!=
nullptr
,
"failed to get step net"
);
for
(
int
step_id
=
seq_len_
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len_
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
,
false
/*infer_shape_mode*/
);
}
net
->
GetMutable
<
NetOp
>
(
)
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
(
*
stepnet_
)
->
Run
(
*
step_scopes
[
step_id
],
dev_ctx
);
}
LinkBootMemoryGradients
(
step_scopes
[
0
],
false
);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
...
...
@@ -219,14 +210,12 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
Variable
*
net
=
scope
.
FindVar
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net
!=
nullptr
,
"failed to get step net"
);
for
(
int
step_id
=
seq_len_
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len_
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
,
true
/*infer_shape_mode*/
);
}
net
->
GetMutable
<
NetOp
>
(
)
->
InferShape
(
*
step_scopes
[
step_id
]);
(
*
stepnet_
)
->
InferShape
(
*
step_scopes
[
step_id
]);
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
true
/*infer_shape_mode*/
);
...
...
@@ -238,13 +227,13 @@ RecurrentGradientOp::RecurrentGradientOp(
const
framework
::
OperatorBase
::
VarNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{
std
::
unique_ptr
<
rnn
::
Argument
>
arg
(
new
rnn
::
Argument
());
rnn
::
InitArgument
(
kArgName
,
arg
.
get
(),
*
this
);
alg_
.
Init
(
std
::
move
(
arg
));
rnn
::
InitArgument
(
kArgName
,
&
arg_
,
*
this
);
alg_
.
Init
(
&
arg_
,
&
stepnet_
);
}
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
recurrent_op
,
paddle
::
operators
::
RecurrentOp
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
recurrent_op
,
paddle
::
operators
::
RecurrentOp
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
);
paddle/operators/recurrent_op.h
浏览文件 @
4c9699c5
...
...
@@ -15,6 +15,7 @@
#pragma once
#include "paddle/framework/operator.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/rnn/recurrent_op_utils.h"
namespace
paddle
{
...
...
@@ -33,7 +34,11 @@ class RecurrentAlgorithm {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
;
void
Init
(
std
::
unique_ptr
<
rnn
::
Argument
>
arg
)
{
arg_
=
std
::
move
(
arg
);
}
void
Init
(
rnn
::
Argument
*
arg
,
std
::
shared_ptr
<
NetOp
>*
stepnet
)
{
PADDLE_ENFORCE_NOT_NULL
(
stepnet
,
"stepnet should be set before."
);
arg_
=
arg
;
stepnet_
=
stepnet
;
}
/**
* InferShape must be called before Run.
...
...
@@ -58,7 +63,8 @@ class RecurrentAlgorithm {
void
InitMemories
(
framework
::
Scope
*
step_scopes
,
bool
infer_shape_mode
)
const
;
private:
std
::
unique_ptr
<
rnn
::
Argument
>
arg_
;
std
::
shared_ptr
<
NetOp
>*
stepnet_
;
rnn
::
Argument
*
arg_
;
mutable
size_t
seq_len_
;
};
...
...
@@ -74,7 +80,11 @@ class RecurrentGradientAlgorithm {
* operator.
*/
public:
void
Init
(
std
::
unique_ptr
<
rnn
::
Argument
>
arg
)
{
arg_
=
std
::
move
(
arg
);
}
void
Init
(
rnn
::
Argument
*
arg
,
std
::
shared_ptr
<
NetOp
>*
stepnet
)
{
PADDLE_ENFORCE_NOT_NULL
(
stepnet
,
"stepnet should be set before."
);
arg_
=
std
::
move
(
arg
);
stepnet_
=
stepnet
;
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
;
...
...
@@ -95,8 +105,9 @@ class RecurrentGradientAlgorithm {
}
private:
std
::
unique_ptr
<
rnn
::
Argument
>
arg_
;
rnn
::
Argument
*
arg_
;
mutable
size_t
seq_len_
;
std
::
shared_ptr
<
NetOp
>*
stepnet_
;
};
class
RecurrentOp
final
:
public
framework
::
OperatorBase
{
...
...
@@ -115,10 +126,15 @@ class RecurrentOp final : public framework::OperatorBase {
alg_
.
Run
(
scope
,
dev_ctx
);
}
void
set_stepnet
(
std
::
shared_ptr
<
NetOp
>
net
)
{
stepnet_
=
net
;
}
const
NetOp
*
stepnet
()
const
{
return
stepnet_
.
get
();
}
static
const
rnn
::
ArgumentName
kArgName
;
private:
RecurrentAlgorithm
alg_
;
rnn
::
Argument
arg_
;
std
::
shared_ptr
<
NetOp
>
stepnet_
;
};
class
RecurrentGradientOp
final
:
public
framework
::
OperatorBase
{
...
...
@@ -141,8 +157,13 @@ class RecurrentGradientOp final : public framework::OperatorBase {
static
const
rnn
::
ArgumentName
kArgName
;
void
set_stepnet
(
const
std
::
shared_ptr
<
NetOp
>&
net
)
{
stepnet_
=
net
;
}
const
NetOp
*
stepnet
()
const
{
return
stepnet_
.
get
();
}
private:
RecurrentGradientAlgorithm
alg_
;
std
::
shared_ptr
<
NetOp
>
stepnet_
;
rnn
::
Argument
arg_
;
};
}
// namespace operators
...
...
paddle/operators/recurrent_op_test.cc
已删除
100644 → 0
浏览文件 @
e0395a53
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "paddle/operators/recurrent_op.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/framework/ddim.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/net_op.h"
namespace
paddle
{
namespace
operators
{
using
namespace
paddle
::
framework
;
class
RecurrentGradientAlgorithmTest
:
public
::
testing
::
Test
{
protected:
virtual
void
SetUp
()
override
{
CreateGlobalVariables
();
CreateStepScopes
();
CreateStepNet
();
CreateRNNGradientAlgorithm
();
// segment inputs
SegmentInputs
();
// link forward memories
LinkeMemories
();
}
virtual
void
TearDown
()
override
{}
void
CreateGlobalVariables
()
{
// inputs: x
LOG
(
INFO
)
<<
"create global variable x"
;
Variable
*
x
=
scope_
.
NewVar
(
"x"
);
DDim
dims
=
make_ddim
({
10
/*sent size*/
,
20
/*batch size*/
,
30
/*input dim*/
});
x
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
dims
,
platform
::
CPUPlace
());
// inputs: h_boot
LOG
(
INFO
)
<<
"create global variable h_boot"
;
Variable
*
h_boot
=
scope_
.
NewVar
(
"h_boot"
);
h_boot
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
make_ddim
({
20
/*batch size*/
,
30
/*input dim*/
}),
platform
::
CPUPlace
());
// inputs: w
LOG
(
INFO
)
<<
"create global variable w"
;
Variable
*
w
=
scope_
.
NewVar
(
"rnn/w"
);
w
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
make_ddim
({
30
,
30
}),
platform
::
CPUPlace
());
// inputs: h_grad
LOG
(
INFO
)
<<
"create variable h_grad"
;
Variable
*
dh
=
scope_
.
NewVar
(
"h_grad"
);
dh
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
make_ddim
({
10
,
20
,
30
}),
platform
::
CPUPlace
());
// inputs: step_scopes
LOG
(
INFO
)
<<
"create variable step_scopes"
;
scope_
.
NewVar
(
"step_scopes"
);
// inputs: step_net
LOG
(
INFO
)
<<
"create variable step_net"
;
scope_
.
NewVar
(
"step_net"
);
// outputs: w_grad
LOG
(
INFO
)
<<
"create global variable w_grad"
;
scope_
.
NewVar
(
"rnn/w_grad"
);
// outputs: x_grad
LOG
(
INFO
)
<<
"create global variable x_grad"
;
scope_
.
NewVar
(
"x_grad"
);
// outputs: h_boot_grad
LOG
(
INFO
)
<<
"create global variable h_boot_grad"
;
scope_
.
NewVar
(
"h_boot_grad"
);
}
void
CreateStepScopes
()
{
auto
step_scopes
=
scope_
.
FindVar
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
auto
&
scope
=
scope_
.
NewScope
();
auto
pre_t
=
scope
.
NewVar
(
"rnn/pre_h"
)
->
GetMutable
<
Tensor
>
();
pre_t
->
mutable_data
<
float
>
({
20
,
30
},
platform
::
CPUPlace
());
auto
tensor
=
scope
.
NewVar
(
"rnn/h"
)
->
GetMutable
<
Tensor
>
();
tensor
->
mutable_data
<
float
>
({
20
,
30
},
platform
::
CPUPlace
());
// for unit test of ConcatOutputs
auto
xg
=
scope
.
NewVar
(
"rnn/x_grad"
)
->
GetMutable
<
Tensor
>
();
xg
->
mutable_data
<
float
>
({
20
,
30
},
platform
::
CPUPlace
());
step_scopes
->
emplace_back
(
&
scope
);
}
// last time step
auto
g
=
(
*
step_scopes
)[
9
]
->
NewVar
(
"rnn/h_pre_grad"
)
->
GetMutable
<
Tensor
>
();
g
->
mutable_data
<
float
>
({
20
,
30
},
platform
::
CPUPlace
());
}
void
CreateRNNGradientAlgorithm
()
{
std
::
unique_ptr
<
rnn
::
Argument
>
arg
(
new
rnn
::
Argument
());
arg
->
step_net
=
"step_net"
;
arg
->
step_scopes
=
"step_scopes"
;
rnn
::
Link
inlink
;
inlink
.
external
=
"h_grad"
;
inlink
.
internal
=
"rnn/h_grad"
;
arg
->
inlinks
=
std
::
vector
<
rnn
::
Link
>
{
inlink
};
rnn
::
Link
outlink
;
outlink
.
external
=
"x_grad"
;
outlink
.
internal
=
"rnn/x_grad"
;
arg
->
outlinks
=
std
::
vector
<
rnn
::
Link
>
{
outlink
};
rnn
::
MemoryAttr
mem_attr
;
mem_attr
.
pre_var
=
"rnn/h_pre_grad"
;
mem_attr
.
var
=
"rnn/h_grad"
;
mem_attr
.
boot_var
=
"h_boot_grad"
;
arg
->
memories
=
std
::
vector
<
rnn
::
MemoryAttr
>
{
mem_attr
};
rnn_grad_algo_
.
Init
(
std
::
move
(
arg
));
}
void
CreateStepNet
()
{
LOG
(
INFO
)
<<
"create variable step_net"
;
Variable
*
var
=
scope_
.
NewVar
(
"step_net"
);
auto
net
=
var
->
GetMutable
<
NetOp
>
();
// TODO(qingqing) modify backward op create for RNNOp unit test
// and the unit test will be removed to Python.
// net->AddOp(OpRegistry::CreateOp("mul", {"X", {"rnn/h_pre", "rnn/w",
// "rnn/s_grad"}}, {"Y", {"rnn/h_pre_grad", "rnn/w_grad"}}, {}));
// net->AddOp(OpRegistry::CreateOp("add_two", {"X", {"rnn/h_grad"}},
// {"Y", {"rnn/x_grad"}}, {"Out", "rnn/s_grad"}}, {}));
net
->
CompleteAddOp
();
}
void
SegmentInputs
()
{
LOG
(
INFO
)
<<
"segment inputs"
;
std
::
vector
<
std
::
string
>
inlinks
=
{
"x"
};
std
::
vector
<
std
::
string
>
inlinks_alias
=
{
"rnn/x"
};
rnn
::
Link
inlink
;
inlink
.
external
=
"x"
;
inlink
.
internal
=
"rnn/x"
;
auto
step_scopes
=
scope_
.
FindVar
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
rnn
::
SegmentInputs
(
*
step_scopes
,
std
::
vector
<
rnn
::
Link
>
{
inlink
},
10
,
true
/*infer_shape_mode*/
);
}
void
LinkeMemories
()
{
LOG
(
INFO
)
<<
"link memories"
;
rnn
::
MemoryAttr
mem_attr
;
mem_attr
.
pre_var
=
"rnn/h_pre"
;
mem_attr
.
var
=
"rnn/h"
;
mem_attr
.
boot_var
=
"boot_h"
;
std
::
vector
<
rnn
::
MemoryAttr
>
memories
;
memories
.
push_back
(
mem_attr
);
auto
step_scopes
=
scope_
.
FindVar
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
Scope
*>>
();
for
(
int
i
=
1
;
i
<
10
;
++
i
)
{
rnn
::
LinkMemories
(
*
step_scopes
,
memories
,
i
,
-
1
,
true
/*infer_shape_mode*/
);
}
}
Scope
scope_
;
RecurrentGradientAlgorithm
rnn_grad_algo_
;
};
// TEST_F(RecurrentGradientAlgorithmTest, Run) {
// platform::CPUDeviceContext ctx;
// rnn_grad_algo_.Run(scope_, ctx);
// }
}
// namespace operators
}
// namespace paddle
TEST
(
RecurrentOp
,
LinkMemories
)
{
using
namespace
paddle
::
framework
;
using
namespace
paddle
::
platform
;
using
namespace
paddle
::
operators
;
// create and init step scopes
size_t
len
=
10
;
std
::
vector
<
Scope
*>
step_scopes
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
auto
scope
=
new
Scope
();
scope
->
NewVar
(
"pre_h"
);
auto
tensor
=
scope
->
NewVar
(
"h"
)
->
GetMutable
<
Tensor
>
();
float
*
data
=
tensor
->
mutable_data
<
float
>
({
15
,
20
},
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
data
[
j
]
=
rand
()
*
(
1.
/
(
double
)
RAND_MAX
);
}
step_scopes
.
push_back
(
scope
);
}
// create MemoryAttr
rnn
::
MemoryAttr
mem_attr
;
mem_attr
.
pre_var
=
"pre_h"
;
mem_attr
.
var
=
"h"
;
mem_attr
.
boot_var
=
"boot_h"
;
std
::
vector
<
rnn
::
MemoryAttr
>
memories
;
memories
.
push_back
(
mem_attr
);
for
(
size_t
i
=
1
;
i
<
len
;
++
i
)
{
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
-
1
,
false
/*infer_shape_mode*/
);
}
// check
for
(
size_t
i
=
0
;
i
<
len
-
1
;
++
i
)
{
const
float
*
a
=
step_scopes
[
i
]
->
FindVar
(
"h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
const
float
*
b
=
step_scopes
[
i
+
1
]
->
FindVar
(
"pre_h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
ASSERT_FLOAT_EQ
(
a
[
j
],
b
[
j
]);
}
}
for
(
int
i
=
len
-
2
;
i
>=
0
;
--
i
)
{
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
1
,
false
/*infer_shape_mode*/
);
}
// check
for
(
int
i
=
len
-
2
;
i
>=
0
;
--
i
)
{
const
float
*
a
=
step_scopes
[
i
]
->
FindVar
(
"pre_h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
const
float
*
b
=
step_scopes
[
i
+
1
]
->
FindVar
(
"h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
ASSERT_FLOAT_EQ
(
a
[
j
],
b
[
j
]);
}
}
for
(
auto
s
:
step_scopes
)
{
delete
s
;
}
}
USE_OP
(
add_two
);
USE_OP
(
mul
);
USE_OP_ITSELF
(
recurrent_op
);
paddle/operators/rnn/recurrent_op_utils.cc
浏览文件 @
4c9699c5
...
...
@@ -106,7 +106,6 @@ void LinkMemories(const std::vector<Scope*>& scopes,
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
framework
::
OperatorBase
&
op
)
{
arg
->
step_net
=
op
.
Input
(
name
.
step_net
);
arg
->
step_scopes
=
op
.
Output
(
name
.
step_scopes
);
auto
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
...
...
paddle/operators/rowwise_add_op.cc
浏览文件 @
4c9699c5
...
...
@@ -54,6 +54,7 @@ for i in xrange(X.shape[0]):
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
rowwise_add
,
ops
::
RowWiseAddOp
,
ops
::
RowWiseAddOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
rowwise_add
,
ops
::
RowWiseAddOp
,
ops
::
RowWiseAddOpMaker
);
REGISTER_OP_CPU_KERNEL
(
rowwise_add
,
ops
::
RowWiseAddKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/scatter.h
0 → 100644
浏览文件 @
4c9699c5
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
// Implementation of CPU copy
template
<
typename
T
>
void
CPUScatterUpdate
(
const
paddle
::
framework
::
Tensor
*
src
,
const
int
*
index
,
const
size_t
index_size
,
paddle
::
framework
::
Tensor
*
output
)
{
paddle
::
framework
::
DDim
output_dims
=
output
->
dims
();
for
(
size_t
i
=
0
;
i
<
index_size
;
++
i
)
{
int
index_
=
index
[
i
];
paddle
::
framework
::
Tensor
src_
=
*
src
;
paddle
::
framework
::
Tensor
output_
=
*
output
;
if
(
index_size
>
1
)
src_
=
src
->
Slice
<
T
>
(
i
,
i
+
1
);
if
(
output_dims
[
0
]
>
1
)
output_
=
output
->
Slice
<
T
>
(
index_
,
index_
+
1
);
auto
X
=
EigenVector
<
T
>::
Flatten
(
src_
);
auto
Y
=
EigenVector
<
T
>::
Flatten
(
output_
);
Y
=
X
+
Y
;
}
}
// Implementation of GPU scatter:
template
<
typename
T
>
void
GPUScatterUpdate
(
const
T
*
src
,
const
int
*
index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
);
/**
* Return a updated tensor from source tensor, scattered according to index:
* dst[i] += src[index[i]]
* input[src]: type-T source Tensor
* input[index]: type-int index Tensor (1-D)
* return: output tensor
*/
template
<
typename
T
>
void
ScatterUpdate
(
const
platform
::
Place
&
place
,
const
paddle
::
framework
::
Tensor
*
src
,
const
paddle
::
framework
::
Tensor
*
index
,
paddle
::
framework
::
Tensor
*
output
)
{
// check index of shape 1-D
PADDLE_ENFORCE
(
index
->
dims
().
size
()
==
1
);
int
index_size
=
index
->
dims
()[
0
];
auto
src_dims
=
src
->
dims
();
auto
dst_dims
=
output
->
dims
();
// check src shape and dst shape should match
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
i
++
)
PADDLE_ENFORCE
(
src_dims
[
i
]
==
dst_dims
[
i
]);
// slice size
size_t
slice_size
=
1
;
for
(
int
i
=
0
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
if
(
platform
::
is_cpu_place
(
place
))
{
CPUScatterUpdate
<
T
>
(
src
,
index
->
data
<
int
>
(),
index_size
,
output
);
}
else
{
}
}
}
// namespace operators
}
// namespace paddle
paddle/operators/scatter_test.cc
0 → 100644
浏览文件 @
4c9699c5
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/scatter.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
#include <gtest/gtest.h>
#include <iostream>
#include <string>
TEST
(
scatter
,
ScatterUpdate
)
{
using
namespace
paddle
::
framework
;
using
namespace
paddle
::
platform
;
using
namespace
paddle
::
operators
;
Tensor
*
src
=
new
Tensor
();
Tensor
*
index
=
new
Tensor
();
Tensor
*
output
=
new
Tensor
();
float
*
p_src
=
nullptr
;
int
*
p_index
=
nullptr
;
p_src
=
src
->
mutable_data
<
float
>
(
make_ddim
({
1
,
4
}),
CPUPlace
());
p_index
=
index
->
mutable_data
<
int
>
(
make_ddim
({
1
}),
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
4
;
++
i
)
p_src
[
i
]
=
float
(
i
);
p_index
[
0
]
=
1
;
float
*
p_output
=
output
->
mutable_data
<
float
>
(
make_ddim
({
4
,
4
}),
CPUPlace
());
ScatterUpdate
<
float
>
(
CPUPlace
(),
src
,
index
,
output
);
for
(
size_t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
float
(
0
));
for
(
size_t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
0
));
for
(
size_t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
float
(
i
-
4
));
for
(
size_t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
i
-
4
));
for
(
size_t
i
=
8
;
i
<
16
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
float
(
0
));
for
(
size_t
i
=
8
;
i
<
16
;
++
i
)
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
0
));
}
paddle/operators/sgd_op.cc
浏览文件 @
4c9699c5
...
...
@@ -51,6 +51,6 @@ param_out = param - learning_rate * grad;
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OP
_WITHOUT_GRADIENT
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OP_CPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sigmoid_op.cc
浏览文件 @
4c9699c5
...
...
@@ -52,9 +52,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sigmoid
,
ops
::
SigmoidOp
,
ops
::
SigmoidOpMaker
);
REGISTER_GRADIENT_OP
(
sigmoid
,
sigmoid_grad
,
ops
::
SigmoidOpGrad
);
REGISTER_OP
(
sigmoid
,
ops
::
SigmoidOp
,
ops
::
SigmoidOpMaker
,
sigmoid_grad
,
ops
::
SigmoidOpGrad
);
REGISTER_OP_CPU_KERNEL
(
sigmoid
,
ops
::
SigmoidKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
...
...
paddle/operators/softmax_op.cc
浏览文件 @
4c9699c5
...
...
@@ -62,9 +62,9 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
softmax
,
ops
::
SoftmaxOp
,
ops
::
SoftmaxOpMaker
);
REGISTER_OP
(
softmax
,
ops
::
SoftmaxOp
,
ops
::
SoftmaxOpMaker
,
softmax_grad
,
ops
::
SoftmaxOpGrad
);
REGISTER_OP_CPU_KERNEL
(
softmax
,
ops
::
SoftmaxKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
softmax
,
softmax_grad
,
ops
::
SoftmaxOpGrad
);
REGISTER_OP_CPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/uniform_random_op.cc
浏览文件 @
4c9699c5
...
...
@@ -81,7 +81,7 @@ Used to initialize tensor with uniform random generator.
}
// namespace operators
}
// namespace paddle
REGISTER_OP
(
uniform_random
,
paddle
::
operators
::
UniformRandomOp
,
paddle
::
operators
::
UniformRandomOpMaker
);
REGISTER_OP
_WITHOUT_GRADIENT
(
uniform_random
,
paddle
::
operators
::
UniformRandomOp
,
paddle
::
operators
::
UniformRandomOpMaker
);
REGISTER_OP_CPU_KERNEL
(
uniform_random
,
paddle
::
operators
::
CPUUniformRandomKernel
<
float
>
);
paddle/platform/enforce.h
浏览文件 @
4c9699c5
...
...
@@ -14,14 +14,21 @@ limitations under the License. */
#pragma once
#include <execinfo.h>
#include <dlfcn.h> // for dladdr
#include <execinfo.h> // for backtrace
#include <iomanip>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include "paddle/string/printf.h"
#include "paddle/string/to_string.h"
#ifdef __GNUC__
#include <cxxabi.h> // for __cxa_demangle
#endif
#ifndef PADDLE_ONLY_CPU
#include "paddle/platform/dynload/cublas.h"
...
...
@@ -39,6 +46,19 @@ limitations under the License. */
namespace
paddle
{
namespace
platform
{
namespace
{
#ifdef __GNUC__
inline
std
::
string
demangle
(
std
::
string
name
)
{
int
status
=
-
4
;
// some arbitrary value to eliminate the compiler warning
std
::
unique_ptr
<
char
,
void
(
*
)(
void
*
)
>
res
{
abi
::
__cxa_demangle
(
name
.
c_str
(),
NULL
,
NULL
,
&
status
),
std
::
free
};
return
(
status
==
0
)
?
res
.
get
()
:
name
;
}
#else
inline
std
::
string
demangle
(
std
::
string
name
)
{
return
name
;
}
#endif
}
struct
EnforceNotMet
:
public
std
::
exception
{
std
::
exception_ptr
exp_
;
std
::
string
err_str_
;
...
...
@@ -48,15 +68,29 @@ struct EnforceNotMet : public std::exception {
std
::
rethrow_exception
(
exp_
);
}
catch
(
const
std
::
exception
&
exp
)
{
std
::
ostringstream
sout
;
sout
<<
string
::
Sprintf
(
"%s at [%s:%d]"
,
exp
.
what
(),
f
,
l
)
<<
std
::
endl
;
sout
<<
"Call Stacks: "
<<
std
::
endl
;
sout
<<
"PaddlePaddle Call Stacks: "
<<
std
::
endl
;
void
*
call_stack
[
TRACE_STACK_LIMIT
];
int
sz
=
backtrace
(
call_stack
,
TRACE_STACK_LIMIT
);
auto
line
=
backtrace_symbols
(
call_stack
,
sz
);
for
(
int
i
=
0
;
i
<
sz
;
++
i
)
{
sout
<<
line
[
i
]
<<
std
::
endl
;
auto
size
=
backtrace
(
call_stack
,
TRACE_STACK_LIMIT
);
auto
symbols
=
backtrace_symbols
(
call_stack
,
size
);
Dl_info
info
;
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
if
(
dladdr
(
call_stack
[
i
],
&
info
))
{
auto
demangled
=
demangle
(
info
.
dli_sname
);
auto
addr_offset
=
static_cast
<
char
*>
(
call_stack
[
i
])
-
static_cast
<
char
*>
(
info
.
dli_saddr
);
sout
<<
string
::
Sprintf
(
"%-3d %*0p %s + %zd
\n
"
,
i
,
2
+
sizeof
(
void
*
)
*
2
,
call_stack
[
i
],
demangled
,
addr_offset
);
}
else
{
sout
<<
string
::
Sprintf
(
"%-3d %*0p %s
\n
"
,
i
,
2
+
sizeof
(
void
*
)
*
2
,
call_stack
[
i
]);
}
}
free
(
line
);
free
(
symbols
);
err_str_
=
sout
.
str
();
}
}
...
...
@@ -170,7 +204,7 @@ inline void throw_on_error(T e) {
* PADDLE_ENFORCE_EQ(a, b);
*
* will raise an expression described as follows:
* "enforce a == b failed, 1 != 2" with detailed stack infomation.
* "enforce a == b failed, 1 != 2" with detailed stack info
r
mation.
*
* extra messages is also supported, for example:
* PADDLE_ENFORCE(a, b, "some simple enforce failed between %d numbers", 2)
...
...
paddle/scripts/submit_local.sh.in
浏览文件 @
4c9699c5
...
...
@@ -18,6 +18,8 @@ function version(){
echo
"PaddlePaddle @PADDLE_VERSION@, compiled with"
echo
" with_avx: @WITH_AVX@"
echo
" with_gpu: @WITH_GPU@"
echo
" with_mkldnn: @WITH_MKLDNN"
echo
" with_mklml: @WITH_MKLML@"
echo
" with_double: @WITH_DOUBLE@"
echo
" with_python: @WITH_PYTHON@"
echo
" with_rdma: @WITH_RDMA@"
...
...
python/CMakeLists.txt
浏览文件 @
4c9699c5
...
...
@@ -21,6 +21,18 @@ if(WITH_GOLANG)
add_dependencies
(
copy_paddle_master paddle_master
)
endif
(
WITH_GOLANG
)
set
(
MKL_SHARED_LIBS
""
)
set
(
MKL_DEPENDS
""
)
if
(
WITH_MKLML
)
list
(
APPEND MKL_SHARED_LIBS
${
MKLML_LIB
}
${
MKLML_IOMP_LIB
}
)
list
(
APPEND MKL_DEPENDS mklml
)
endif
()
if
(
WITH_MKLDNN
)
list
(
APPEND MKL_SHARED_LIBS
"
${
MKLDNN_LIB
}
"
"
${
MKLDNN_LIB
}
.0"
)
list
(
APPEND MKL_DEPENDS mkldnn
)
endif
()
configure_file
(
${
CMAKE_CURRENT_SOURCE_DIR
}
/setup.py.in
${
CMAKE_CURRENT_BINARY_DIR
}
/setup.py
)
...
...
@@ -39,7 +51,7 @@ add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
DEPENDS gen_proto_py copy_paddle_pybind framework_py_proto
${
PY_FILES
}
${
external_project_dependencies
}
${
COPY_PADDLE_MASTER
}
)
add_custom_target
(
paddle_python ALL DEPENDS
${
PADDLE_PYTHON_BUILD_DIR
}
/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model python_api_wheel
)
${
PADDLE_PYTHON_BUILD_DIR
}
/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model python_api_wheel
${
MKL_DEPENDS
}
)
set
(
PADDLE_PYTHON_PACKAGE_DIR
${
CMAKE_CURRENT_BINARY_DIR
}
/dist/
)
...
...
python/paddle/trainer_config_helpers/evaluators.py
浏览文件 @
4c9699c5
...
...
@@ -298,8 +298,8 @@ def pnpair_evaluator(
input
,
label
,
info
,
name
=
None
,
weight
=
None
,
):
weight
=
None
,
name
=
None
,
):
"""
Positive-negative pair rate Evaluator which adapts to rank task like
learning to rank. This evaluator must contain at least three layers.
...
...
@@ -308,27 +308,31 @@ def pnpair_evaluator(
.. code-block:: python
eval = pnpair_evaluator(input,
info, label
)
eval = pnpair_evaluator(input,
label, info
)
:param name: Evaluator name.
:type name: None|basestring
:param input: Input Layer name. The output prediction of network.
:type input: LayerOutput
:param label: Label layer name.
:type label: LayerOutput
:param info:
Label
layer name. (TODO, explaination)
:param info:
Info
layer name. (TODO, explaination)
:type info: LayerOutput
:param weight: Weight Layer name. It should be a matrix with size
[sample_num, 1]. (TODO, explaination)
:type weight: LayerOutput
:param name: Evaluator name.
:type name: None|basestring
"""
if
not
isinstance
(
input
,
list
):
input
=
[
input
]
if
label
:
input
.
append
(
label
)
if
info
:
input
.
append
(
info
)
evaluator_base
(
name
=
name
,
type
=
"pnpair"
,
input
=
input
,
label
=
label
,
info
=
info
,
weight
=
weight
)
type
=
"pnpair"
,
weight
=
weight
,
name
=
name
,
)
@
evaluator
(
EvaluatorAttribute
.
FOR_CLASSIFICATION
)
...
...
@@ -429,12 +433,12 @@ def chunk_evaluator(
.. code-block:: text
Scheme Description
Scheme Description
plain Use the same label for the whole chunk.
IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
IOB Two labels for chunk type X, B-X for chunk begining and I-X for chunk inside.
IOE Two labels for chunk type X, E-X for chunk ending and I-X for chunk inside.
IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
IOBES Four labels for chunk type X, B-X for chunk begining, I-X for chunk inside, E-X for chunk end and S-X for single word chunk.
To make it clear, let's illustrate by an NER example.
Assuming that there are three named entity types including ORG, PER and LOC which are called 'chunk type' here,
if 'IOB' scheme were used, the label set will be extended to a set including B-ORG, I-ORG, B-PER, I-PER, B-LOC, I-LOC and O,
...
...
@@ -451,7 +455,7 @@ def chunk_evaluator(
tagType = label % numTagType
chunkType = label / numTagType
otherChunkType = numChunkTypes
The following table shows the mapping rule between tagType and tag type in each scheme.
.. code-block:: text
...
...
@@ -475,7 +479,7 @@ def chunk_evaluator(
O 6
In this example, chunkType has three values: 0 for ORG, 1 for PER, 2 for LOC, because the scheme is
"IOB" so tagType has two values: 0 for B and 1 for I.
"IOB" so tagType has two values: 0 for B and 1 for I.
Here we will use I-LOC to explain the above mapping rules in detail.
For I-LOC, the label id is 5, so we can get tagType=1 and chunkType=2, which means I-LOC is a part of NER chunk LOC
and the tag is I.
...
...
@@ -486,7 +490,7 @@ def chunk_evaluator(
eval = chunk_evaluator(input, label, chunk_scheme, num_chunk_types)
:param input: The input layers.
:type input: LayerOutput
:param label: An input layer containing the ground truth label.
...
...
python/paddle/v2/framework/op.py
浏览文件 @
4c9699c5
...
...
@@ -23,7 +23,7 @@ class OpDescCreationMethod(object):
"""
A Functor object to convert user input(use key word args) to OpDesc based on
OpProto.
:param op_proto: The OpProto object.
:type op_proto: op_proto_pb2.OpProto
"""
...
...
@@ -177,4 +177,26 @@ class OperatorFactory(object):
return
self
.
get_op_info
(
type
).
attrs
class
__RecurrentOp__
(
object
):
__proto__
=
None
type
=
'recurrent_op'
def
__init__
(
self
):
# cache recurrent_op's proto
if
self
.
__proto__
is
None
:
for
op_proto
in
get_all_op_protos
():
if
op_proto
.
type
==
self
.
type
:
self
.
__proto__
=
op_proto
def
__call__
(
self
,
*
args
,
**
kwargs
):
if
self
.
type
not
in
args
and
'type'
not
in
kwargs
:
kwargs
[
'type'
]
=
self
.
type
# create proto
create_method
=
OpDescCreationMethod
(
self
.
__proto__
)
proto
=
create_method
(
*
args
,
**
kwargs
)
# create rnnop
return
core
.
RecurrentOp
.
create
(
proto
.
SerializeToString
())
Operator
=
OperatorFactory
()
# Default global factory
RecurrentOp
=
__RecurrentOp__
()
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
4c9699c5
...
...
@@ -2,7 +2,7 @@ import logging
import
paddle.v2.framework.core
as
core
import
unittest
import
numpy
as
np
from
paddle.v2.framework.op
import
Operator
from
paddle.v2.framework.op
import
Operator
,
RecurrentOp
def
py_sigmoid
(
x
):
...
...
@@ -98,11 +98,11 @@ class TestRecurrentOp(unittest.TestCase):
def
forward
(
self
):
self
.
scope
=
core
.
Scope
()
self
.
create_global_variables
()
self
.
create_rnn_op
()
self
.
create_step_net
()
rnn_op
=
self
.
create_rnn_op
()
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
rnn_
op
.
infer_shape
(
self
.
scope
)
rnn_
op
.
run
(
self
.
scope
,
ctx
)
self
.
rnn
op
.
infer_shape
(
self
.
scope
)
self
.
rnn
op
.
run
(
self
.
scope
,
ctx
)
return
np
.
array
(
self
.
scope
.
find_var
(
"h"
).
get_tensor
())
def
create_global_variables
(
self
):
...
...
@@ -128,8 +128,7 @@ class TestRecurrentOp(unittest.TestCase):
def
create_rnn_op
(
self
):
# create RNNOp
rnnop
=
Operator
(
"recurrent_op"
,
self
.
rnnop
=
RecurrentOp
(
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
...
...
@@ -142,14 +141,9 @@ class TestRecurrentOp(unittest.TestCase):
outlink_alias
=
[
"h@alias"
],
pre_memories
=
[
"h@pre"
],
memories
=
[
"h@alias"
])
return
rnnop
def
create_step_net
(
self
):
var
=
self
.
scope
.
new_var
(
"stepnet"
)
stepnet
=
var
.
get_net
()
# x_fc_op = Operator("fc", X="x@alias", W="W", Y="Wx")
# h_fc_op = Operator("fc", X="h@pre", W="U", Y="Uh")
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x@alias"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"add_two"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
...
...
@@ -158,6 +152,7 @@ class TestRecurrentOp(unittest.TestCase):
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
add_op
(
op
)
stepnet
.
complete_add_op
(
True
)
self
.
rnnop
.
set_stepnet
(
stepnet
)
def
test_forward
(
self
):
print
'test recurrent op forward'
...
...
python/setup.py.in
浏览文件 @
4c9699c5
...
...
@@ -23,6 +23,16 @@ with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']:
setup_requires+=["opencv-python"]
# the prefix is sys.prefix which should always be usr
paddle_bin_dir = 'local/opt/paddle/bin'
paddle_bins = ['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model',
'${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main']
paddle_rt_lib_dir = 'local/lib'
paddle_rt_libs = [] if '${MKL_SHARED_LIBS}'== '' else '${MKL_SHARED_LIBS}'.split(';')
setup(name='paddlepaddle',
version='${PADDLE_VERSION}',
description='Parallel Distributed Deep Learning',
...
...
@@ -42,9 +52,6 @@ setup(name='paddlepaddle',
},
scripts=['${PADDLE_BINARY_DIR}/paddle/scripts/paddle'],
distclass=BinaryDistribution,
data_files=[('/usr/local/opt/paddle/bin',
['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer',
'${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model',
'${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main'])]
data_files=[(paddle_bin_dir, paddle_bins),
(paddle_rt_lib_dir, paddle_rt_libs)]
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录