Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
48410b9b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
48410b9b
编写于
1月 09, 2019
作者:
T
tensor-tang
提交者:
GitHub
1月 09, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15237 from tensor-tang/fuse/seqpool_concat_2
Fuse/seqpool concat 2
上级
9b41e455
f8c305b2
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
565 addition
and
30 deletion
+565
-30
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
+194
-0
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.h
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.h
+38
-0
paddle/fluid/inference/api/paddle_pass_builder.h
paddle/fluid/inference/api/paddle_pass_builder.h
+1
-0
paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc
...le/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc
+5
-1
paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc
paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc
+132
-0
paddle/fluid/operators/fused/fusion_seqpool_concat_op.h
paddle/fluid/operators/fused/fusion_seqpool_concat_op.h
+41
-0
python/paddle/fluid/tests/unittests/test_fusion_seqpool_concat_op.py
...le/fluid/tests/unittests/test_fusion_seqpool_concat_op.py
+118
-0
python/paddle/fluid/tests/unittests/test_reorder_lod_tensor.py
...n/paddle/fluid/tests/unittests/test_reorder_lod_tensor.py
+8
-7
python/paddle/fluid/tests/unittests/test_seq_pool.py
python/paddle/fluid/tests/unittests/test_seq_pool.py
+27
-22
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
48410b9b
...
...
@@ -42,6 +42,7 @@ pass_library(seq_concat_fc_fuse_pass inference)
pass_library
(
multi_batch_merge_pass base
)
pass_library
(
conv_bn_fuse_pass inference
)
pass_library
(
seqconv_eltadd_relu_fuse_pass inference
)
pass_library
(
seqpool_concat_fuse_pass inference
)
pass_library
(
is_test_pass base
)
pass_library
(
conv_elementwise_add_act_fuse_pass inference
)
pass_library
(
conv_elementwise_add2_act_fuse_pass inference
)
...
...
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
0 → 100644
浏览文件 @
48410b9b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/framework/ir/seqpool_concat_fuse_pass.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#define MAX_CONCAT_INPUTS 200
namespace
paddle
{
namespace
framework
{
namespace
ir
{
PDNode
*
BuildSeqPoolConcatPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
int
num_inputs
)
{
auto
is_concat_op_with_inputs
=
[](
Node
*
x
,
int
num
)
->
bool
{
return
x
&&
x
->
IsOp
()
&&
x
->
Op
()
->
Type
()
==
"concat"
&&
x
->
Op
()
->
Input
(
"X"
).
size
()
==
static_cast
<
size_t
>
(
num
);
};
auto
is_nth_input_var_of_concat
=
[
=
](
Node
*
x
,
int
idx
)
->
bool
{
return
x
&&
x
->
IsVar
()
&&
VarLinksToOp
(
x
,
"concat"
)
&&
x
->
outputs
.
size
()
==
1
&&
IsNthInput
(
x
,
x
->
outputs
[
0
],
"X"
,
idx
)
&&
is_concat_op_with_inputs
(
x
->
outputs
[
0
],
num_inputs
);
};
auto
is_seqpool_op_with_pootype_of_nth_input_of_concat
=
[
=
](
Node
*
x
,
const
std
::
string
&
type
,
int
idx
)
->
bool
{
bool
ok
=
x
&&
x
->
IsOp
()
&&
x
->
Op
()
->
Type
()
==
"sequence_pool"
&&
x
->
Op
()
->
HasAttr
(
"pooltype"
)
&&
boost
::
get
<
std
::
string
>
(
x
->
Op
()
->
GetAttr
(
"pooltype"
))
==
type
&&
x
->
outputs
.
size
()
==
2
;
// seqpool should only have 2 outputs
if
(
ok
)
{
// only one output of seqpool_op is nth_input_var of concat
// the other one should be unused empty var
if
(
is_nth_input_var_of_concat
(
x
->
outputs
[
0
],
idx
))
{
ok
=
ok
&&
x
->
outputs
[
1
]
->
IsVar
()
&&
x
->
outputs
[
1
]
->
outputs
.
size
()
==
0
;
}
else
{
ok
=
ok
&&
is_nth_input_var_of_concat
(
x
->
outputs
[
1
],
idx
)
&&
x
->
outputs
[
0
]
->
IsVar
()
&&
x
->
outputs
[
0
]
->
outputs
.
size
()
==
0
;
}
}
return
ok
;
};
auto
*
concat_op
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
is_concat_op_with_inputs
(
x
,
num_inputs
);
},
name_scope
+
"/concat_op"
);
concat_op
->
assert_op_attr
<
int
>
(
"axis"
,
1
);
auto
*
concat_out_var
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsVar
()
&&
VarLinksFromOp
(
x
,
"concat"
)
&&
x
->
inputs
.
size
()
==
1
&&
is_concat_op_with_inputs
(
x
->
inputs
[
0
],
num_inputs
);
},
name_scope
+
"/concat_out_var"
);
concat_out_var
->
assert_is_only_output_of_op
(
"concat"
);
std
::
vector
<
PDNode
*>
seqpool_ops_input_var
(
num_inputs
);
std
::
vector
<
PDNode
*>
seqpool_ops_output_var
(
num_inputs
);
std
::
vector
<
PDNode
*>
seqpool_ops
(
num_inputs
);
for
(
int
i
=
0
;
i
<
num_inputs
;
++
i
)
{
seqpool_ops_output_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsVar
()
&&
is_nth_input_var_of_concat
(
x
,
i
)
&&
x
->
inputs
.
size
()
==
1
&&
is_seqpool_op_with_pootype_of_nth_input_of_concat
(
x
->
inputs
[
0
],
"SUM"
,
i
);
},
name_scope
+
"/sequence_pool_out_"
+
std
::
to_string
(
i
));
seqpool_ops
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsOp
()
&&
is_seqpool_op_with_pootype_of_nth_input_of_concat
(
x
,
"SUM"
,
i
);
},
name_scope
+
"/sequence_pool_op_"
+
std
::
to_string
(
i
));
seqpool_ops_input_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsVar
()
&&
x
->
outputs
.
size
()
>=
1
&&
is_seqpool_op_with_pootype_of_nth_input_of_concat
(
x
->
outputs
[
0
],
"SUM"
,
i
);
},
name_scope
+
"/sequence_pool_in_"
+
std
::
to_string
(
i
));
// Links
seqpool_ops
[
i
]
->
LinksFrom
({
seqpool_ops_input_var
[
i
]})
.
LinksTo
({
seqpool_ops_output_var
[
i
]});
}
concat_op
->
LinksFrom
(
seqpool_ops_output_var
).
LinksTo
({
concat_out_var
});
return
concat_out_var
;
}
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
Scope
*
scope
,
int
num_inputs
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
BuildSeqPoolConcatPattern
(
pattern
,
name_scope
,
num_inputs
);
auto
retrieve_node
=
[](
const
std
::
string
&
name
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
const
PDPattern
&
pat
)
->
Node
*
{
PADDLE_ENFORCE
(
subgraph
.
count
(
pat
.
RetrieveNode
(
name
)),
"pattern has no Node called %s"
,
name
.
c_str
());
Node
*
p
=
subgraph
.
at
(
pat
.
RetrieveNode
(
name
));
PADDLE_ENFORCE_NOT_NULL
(
p
,
"subgraph has no node %s"
,
name
.
c_str
());
return
p
;
};
int
fusion_count
{
0
};
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"handle SeqPool Concat fuse"
;
std
::
vector
<
std
::
string
>
input_names
(
num_inputs
);
std
::
vector
<
Node
*>
input_vars
(
num_inputs
);
auto
&
fused_pattern
=
gpd
.
pattern
();
for
(
int
i
=
0
;
i
<
num_inputs
;
++
i
)
{
input_vars
[
i
]
=
retrieve_node
(
name_scope
+
"/sequence_pool_in_"
+
std
::
to_string
(
i
),
subgraph
,
fused_pattern
);
input_names
[
i
]
=
input_vars
[
i
]
->
Name
();
}
auto
*
concat_op
=
retrieve_node
(
name_scope
+
"/concat_op"
,
subgraph
,
fused_pattern
);
auto
*
concat_out_var
=
retrieve_node
(
name_scope
+
"/concat_out_var"
,
subgraph
,
fused_pattern
);
auto
*
seqpool_op0
=
retrieve_node
(
name_scope
+
"/sequence_pool_op_0"
,
subgraph
,
fused_pattern
);
// Create New OpDesc
OpDesc
op_desc
;
op_desc
.
SetType
(
"fusion_seqpool_concat"
);
op_desc
.
SetInput
(
"X"
,
input_names
);
op_desc
.
SetAttr
(
"pooltype"
,
seqpool_op0
->
Op
()
->
GetAttr
(
"pooltype"
));
op_desc
.
SetAttr
(
"axis"
,
concat_op
->
Op
()
->
GetAttr
(
"axis"
));
op_desc
.
SetOutput
(
"Out"
,
{
concat_out_var
->
Name
()});
auto
*
op
=
graph
->
CreateOpNode
(
&
op_desc
);
for
(
size_t
i
=
0
;
i
<
input_vars
.
size
();
++
i
)
{
IR_NODE_LINK_TO
(
input_vars
[
i
],
op
);
}
IR_NODE_LINK_TO
(
op
,
concat_out_var
);
std
::
unordered_set
<
const
Node
*>
marked_nodes
;
for
(
auto
&
item
:
subgraph
)
{
marked_nodes
.
insert
(
item
.
second
);
}
for
(
size_t
i
=
0
;
i
<
input_vars
.
size
();
++
i
)
{
marked_nodes
.
erase
(
input_vars
[
i
]);
}
marked_nodes
.
erase
(
concat_out_var
);
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
++
fusion_count
;
};
gpd
(
graph
,
handler
);
return
fusion_count
;
}
std
::
unique_ptr
<
ir
::
Graph
>
SeqPoolConcatFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
int
fusion_count
=
0
;
for
(
int
i
=
MAX_CONCAT_INPUTS
;
i
>
0
;
--
i
)
{
fusion_count
+=
BuildFusion
(
graph
.
get
(),
name_scope_
+
"/"
+
std
::
to_string
(
i
),
param_scope
(),
i
);
}
AddStatis
(
fusion_count
);
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
seqpool_concat_fuse_pass
,
paddle
::
framework
::
ir
::
SeqPoolConcatFusePass
);
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.h
0 → 100644
浏览文件 @
48410b9b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
SeqPoolConcatFusePass
:
public
FusePassBase
{
public:
virtual
~
SeqPoolConcatFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
const
std
::
string
name_scope_
{
"seqpool_concat_fuse"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/api/paddle_pass_builder.h
浏览文件 @
48410b9b
...
...
@@ -89,6 +89,7 @@ class CpuPassStrategy : public PassStrategy {
passes_
.
assign
({
"infer_clean_graph_pass"
,
//
"attention_lstm_fuse_pass"
,
//
"seqpool_concat_fuse_pass"
,
//
"seqconv_eltadd_relu_fuse_pass"
,
//
// "embedding_fc_lstm_fuse_pass", //
"fc_lstm_fuse_pass"
,
//
...
...
paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc
浏览文件 @
48410b9b
...
...
@@ -177,8 +177,12 @@ TEST(Analyzer_seq_pool1, fuse_statis) {
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
>
(
cfg
);
auto
fuse_statis
=
GetFuseStatis
(
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
ASSERT_TRUE
(
fuse_statis
.
count
(
"seqpool_concat_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"seqpool_concat_fuse"
),
2
);
LOG
(
INFO
)
<<
"num_ops: "
<<
num_ops
;
EXPECT_EQ
(
num_ops
,
349
);
EXPECT_EQ
(
num_ops
,
195
);
}
}
// namespace analysis
...
...
paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc
0 → 100644
浏览文件 @
48410b9b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_seqpool_concat_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"
namespace
paddle
{
namespace
operators
{
void
FusionSeqPoolConcatOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE_GE
(
ctx
->
Inputs
(
"X"
).
size
(),
1UL
,
"Inputs(X) of FusionSeqPoolConcatOp should be empty."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FusionSeqPoolConcatOp should not be null."
);
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
PADDLE_ENFORCE_EQ
(
axis
,
1
,
"FusionSeqPoolConcatOp only supports concat axis=1 yet."
);
auto
ins_dims
=
ctx
->
GetInputsDim
(
"X"
);
const
size_t
n
=
ins_dims
.
size
();
PADDLE_ENFORCE_GT
(
n
,
0UL
,
"Input tensors count should > 0."
);
if
(
n
==
1
)
{
LOG
(
WARNING
)
<<
"Only have one input, may waste memory"
;
}
// The output height should be confirmed in Compute,
// since input lod is not accessible here.
PADDLE_ENFORCE_EQ
(
ins_dims
[
0
].
size
(),
2UL
,
"The dims size of first input should be 2."
);
ctx
->
SetOutputDim
(
"Out"
,
{
-
1
,
ins_dims
[
0
][
axis
]
*
static_cast
<
int
>
(
n
)});
}
framework
::
OpKernelType
FusionSeqPoolConcatOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
return
framework
::
OpKernelType
(
framework
::
GetDataTypeOfVar
(
ctx
.
MultiInputVar
(
"X"
)[
0
]),
ctx
.
GetPlace
());
}
void
FusionSeqPoolConcatOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) Input tensors of this operator."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"(LoDTensor) Output tensor of concat operator."
);
AddAttr
<
std
::
string
>
(
"pooltype"
,
"(string, default 'AVERAGE') some of the pooling "
"pooltype of SequencePoolOp."
)
.
SetDefault
(
"SUM"
)
.
InEnum
({
"AVERAGE"
,
"SUM"
,
"SQRT"
});
AddAttr
<
int
>
(
"axis"
,
"The axis along which the input tensors will be concatenated."
)
.
SetDefault
(
1
);
AddComment
(
R"DOC(
Fusion Sequence Pool of pooltype(sum, average and sqrt) and Concat Operator.
)DOC"
);
}
template
<
typename
T
>
class
FusionSeqPoolConcatKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
MultiInput
<
LoDTensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
std
::
string
pooltype
=
ctx
.
Attr
<
std
::
string
>
(
"pooltype"
);
auto
x0_lod
=
ins
[
0
]
->
lod
();
auto
x0_dims
=
ins
[
0
]
->
dims
();
auto
y_dims
=
out
->
dims
();
size_t
bs
=
x0_lod
[
0
].
size
()
-
1
;
out
->
Resize
({
static_cast
<
int64_t
>
(
bs
),
y_dims
[
1
]});
framework
::
LoD
y_lod
(
1
);
y_lod
[
0
].
resize
(
bs
+
1
);
for
(
size_t
i
=
0
;
i
<=
bs
;
++
i
)
{
y_lod
[
0
][
i
]
=
i
;
}
out
->
set_lod
(
y_lod
);
auto
place
=
ctx
.
GetPlace
();
T
*
y_data
=
out
->
mutable_data
<
T
>
(
place
);
int
w
=
ins
[
0
]
->
numel
()
/
x0_dims
[
0
];
PADDLE_ENFORCE_EQ
(
y_dims
[
1
]
%
w
,
0
,
"The output of dims[1] should be dividable of w"
);
jit
::
seq_pool_attr_t
attr
(
w
,
jit
::
SeqPoolType
::
kSum
);
if
(
pooltype
==
"AVERAGE"
)
{
attr
.
type
=
jit
::
SeqPoolType
::
kAvg
;
}
else
if
(
pooltype
==
"SQRT"
)
{
attr
.
type
=
jit
::
SeqPoolType
::
kSqrt
;
}
auto
seqpool
=
jit
::
Get
<
jit
::
kSeqPool
,
jit
::
SeqPoolTuples
<
T
>
,
platform
::
CPUPlace
>
(
attr
);
size_t
n
=
ins
.
size
();
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
auto
x_dims
=
ins
[
i
]
->
dims
();
auto
x_lod
=
ins
[
i
]
->
lod
()[
0
];
const
T
*
src
=
ins
[
i
]
->
data
<
T
>
();
T
*
dst
=
y_data
+
i
*
w
;
PADDLE_ENFORCE_EQ
(
static_cast
<
int
>
(
ins
[
i
]
->
numel
()
/
x_dims
[
0
]),
w
,
"Width of all inputs should be equal."
);
PADDLE_ENFORCE_EQ
(
x_lod
.
size
(),
bs
+
1
,
"Batchsize of all inputs should be equal."
);
for
(
size_t
j
=
0
;
j
<
bs
;
++
j
)
{
attr
.
h
=
static_cast
<
int
>
(
x_lod
[
j
+
1
]
-
x_lod
[
j
]);
seqpool
(
src
,
dst
,
&
attr
);
dst
+=
n
*
w
;
src
+=
attr
.
h
*
attr
.
w
;
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fusion_seqpool_concat
,
ops
::
FusionSeqPoolConcatOp
,
ops
::
FusionSeqPoolConcatOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_CPU_KERNEL
(
fusion_seqpool_concat
,
ops
::
FusionSeqPoolConcatKernel
<
float
>
,
ops
::
FusionSeqPoolConcatKernel
<
double
>
);
paddle/fluid/operators/fused/fusion_seqpool_concat_op.h
0 → 100644
浏览文件 @
48410b9b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
class
FusionSeqPoolConcatOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
};
class
FusionSeqPoolConcatOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_fusion_seqpool_concat_op.py
0 → 100644
浏览文件 @
48410b9b
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
test_reorder_lod_tensor
import
convert_to_offset
from
test_seq_pool
import
compute_seqpool_sum
,
compute_seqpool_avg
,
compute_seqpool_sqrt
class
TestFusionSeqPoolConcatOp
(
OpTest
):
def
setUp
(
self
):
self
.
w
=
11
self
.
lods
=
[[[
2
,
3
,
5
]],
[[
1
,
5
,
2
]]]
self
.
set_conf
()
self
.
set_pooltype
()
self
.
op_type
=
'fusion_seqpool_concat'
self
.
axis
=
1
bs
=
len
(
self
.
lods
[
0
][
0
])
inputs
=
[]
outs
=
[]
i
=
0
for
lod
in
self
.
lods
:
assert
bs
==
len
(
lod
[
0
]),
'All lod size should be equal'
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
sum
(
lod
[
0
]),
self
.
w
]).
astype
(
'float32'
)
offset
=
convert_to_offset
(
lod
)
out
=
np
.
zeros
((
bs
,
self
.
w
)).
astype
(
'float32'
)
if
self
.
pooltype
==
"SUM"
:
compute_seqpool_sum
(
x
,
offset
,
out
)
elif
self
.
pooltype
==
"AVERAGE"
:
compute_seqpool_avg
(
x
,
offset
,
out
)
elif
self
.
pooltype
==
"SQRT"
:
compute_seqpool_sqrt
(
x
,
offset
,
out
)
else
:
raise
Exception
(
"Unsupported pool type!"
)
inputs
.
append
((
'x_{0}'
.
format
(
i
),
(
x
,
lod
)))
outs
.
append
(
out
)
i
=
i
+
1
self
.
inputs
=
{
'X'
:
inputs
}
self
.
outputs
=
{
'Out'
:
np
.
concatenate
(
outs
,
axis
=
self
.
axis
)}
self
.
attrs
=
{
'pooltype'
:
self
.
pooltype
,
'axis'
:
self
.
axis
,
}
def
set_pooltype
(
self
):
self
.
pooltype
=
"SUM"
def
set_conf
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
class
TestFusionSeqPoolConcatOpCase1
(
TestFusionSeqPoolConcatOp
):
def
set_conf
(
self
):
self
.
lods
=
[[[
1
]]]
class
TestFusionSeqPoolConcatOpCase2
(
TestFusionSeqPoolConcatOp
):
def
set_conf
(
self
):
self
.
lods
=
[[[
1
]],
[[
1
]],
[[
1
]]]
class
TestFusionSeqPoolConcatOpCase3
(
TestFusionSeqPoolConcatOp
):
def
set_conf
(
self
):
self
.
lods
=
[[[
1
,
3
,
4
,
6
]]]
self
.
w
=
10
class
TestFusionSeqPoolConcatOpCase4
(
TestFusionSeqPoolConcatOp
):
def
set_conf
(
self
):
self
.
lods
=
[[[
2
,
13
,
4
]],
[[
1
,
1
,
1
]],
[[
5
,
3
,
1
]],
[[
9
,
10
,
3
]]]
self
.
w
=
3
## test avg pool and sqrt
def
create_test_avg_sqrt_class
(
parent
):
class
TestSeqPoolAvgCase
(
parent
):
def
set_pooltype
(
self
):
self
.
pooltype
=
"AVERAGE"
class
TestSeqPoolSqrtCase
(
parent
):
def
set_pooltype
(
self
):
self
.
pooltype
=
"SQRT"
cls_name_avg
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"avg"
)
cls_name_sqrt
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"sqrt"
)
TestSeqPoolAvgCase
.
__name__
=
cls_name_avg
TestSeqPoolSqrtCase
.
__name__
=
cls_name_sqrt
globals
()[
cls_name_avg
]
=
TestSeqPoolAvgCase
globals
()[
cls_name_sqrt
]
=
TestSeqPoolSqrtCase
create_test_avg_sqrt_class
(
TestFusionSeqPoolConcatOp
)
create_test_avg_sqrt_class
(
TestFusionSeqPoolConcatOpCase1
)
create_test_avg_sqrt_class
(
TestFusionSeqPoolConcatOpCase2
)
create_test_avg_sqrt_class
(
TestFusionSeqPoolConcatOpCase3
)
create_test_avg_sqrt_class
(
TestFusionSeqPoolConcatOpCase4
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_reorder_lod_tensor.py
浏览文件 @
48410b9b
...
...
@@ -22,6 +22,14 @@ import numpy
import
functools
def
convert_to_offset
(
lod
):
offset
=
[[
0
]
for
i
in
lod
]
for
i
,
level
in
enumerate
(
lod
):
for
seq_len
in
level
:
offset
[
i
].
append
(
offset
[
i
][
-
1
]
+
seq_len
)
return
offset
class
TestReorderLoDTensor
(
unittest
.
TestCase
):
num_seq
=
5
# [name, shape, lod_level] pair indicating data info of source and target
...
...
@@ -91,13 +99,6 @@ class TestReorderLoDTensor(unittest.TestCase):
self
.
inputs
[
desc
[
0
]]
=
tensor
def
reorder
(
self
):
def
convert_to_offset
(
lod
):
offset_lod
=
[[
0
]
for
i
in
lod
]
for
i
,
level
in
enumerate
(
lod
):
for
seq_len
in
level
:
offset_lod
[
i
].
append
(
offset_lod
[
i
][
-
1
]
+
seq_len
)
return
offset_lod
level
=
0
# compute the rank_table according to ref_lod
ref_lod
=
self
.
data
[
self
.
data_desc
[
1
][
0
]][
1
][
level
]
...
...
python/paddle/fluid/tests/unittests/test_seq_pool.py
浏览文件 @
48410b9b
...
...
@@ -17,33 +17,43 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
test_reorder_lod_tensor
import
convert_to_offset
class
TestSeqAvgPool
(
OpTest
):
def
convert_to_offset
(
self
,
lod
):
offset
=
[[
0
]
for
i
in
lod
]
for
i
,
level
in
enumerate
(
lod
):
for
seq_len
in
level
:
offset
[
i
].
append
(
offset
[
i
][
-
1
]
+
seq_len
)
return
offset
def
compute_seqpool_sum
(
x
,
offset
,
out
):
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
sub_x
=
x
[
offset
[
0
][
i
]:
offset
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
def
compute_seqpool_avg
(
x
,
offset
,
out
):
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
sub_x
=
x
[
offset
[
0
][
i
]:
offset
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
mean
(
axis
=
0
)
def
compute_seqpool_sqrt
(
x
,
offset
,
out
):
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
sub_x
=
x
[
offset
[
0
][
i
]:
offset
[
0
][
i
+
1
],
:]
seq_len
=
offset
[
0
][
i
+
1
]
-
offset
[
0
][
i
]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
/
np
.
sqrt
(
seq_len
)
class
TestSeqAvgPool
(
OpTest
):
def
set_data
(
self
):
self
.
op_type
=
'sequence_pool'
# one level, batch size is 4
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
23
]).
astype
(
'float32'
)
lod
=
[[
11
]]
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
offset
=
self
.
convert_to_offset
(
lod
)
offset
=
convert_to_offset
(
lod
)
out
=
np
.
zeros
((
len
(
lod
[
0
]),
23
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
return
x
,
offset
,
out
def
compute
(
self
,
x
,
offset
,
out
):
self
.
attrs
=
{
'pooltype'
:
"AVERAGE"
}
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
sub_x
=
x
[
offset
[
0
][
i
]:
offset
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
mean
(
axis
=
0
)
compute_seqpool_avg
(
x
,
offset
,
out
)
def
setUp
(
self
):
x
,
offset
,
out
=
self
.
set_data
()
...
...
@@ -62,9 +72,7 @@ class TestSeqAvgPool(OpTest):
class
TestSeqSumPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
offset
,
out
):
self
.
attrs
=
{
'pooltype'
:
"SUM"
}
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
sub_x
=
x
[
offset
[
0
][
i
]:
offset
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
compute_seqpool_sum
(
x
,
offset
,
out
)
class
TestSeqMaxPool
(
TestSeqAvgPool
):
...
...
@@ -72,7 +80,7 @@ class TestSeqMaxPool(TestSeqAvgPool):
self
.
op_type
=
'sequence_pool'
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
23
]).
astype
(
'float32'
)
lod
=
[[
13
]]
offset
=
self
.
convert_to_offset
(
lod
)
offset
=
convert_to_offset
(
lod
)
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
l
=
offset
[
0
][
i
+
1
]
-
offset
[
0
][
i
]
x
[
offset
[
0
][
i
]
+
np
.
random
.
randint
(
l
),
:]
+=
2.0
...
...
@@ -93,10 +101,7 @@ class TestSeqMaxPool(TestSeqAvgPool):
class
TestSeqSqrtPool
(
TestSeqAvgPool
):
def
compute
(
self
,
x
,
offset
,
out
):
self
.
attrs
=
{
'pooltype'
:
"SQRT"
}
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
sub_x
=
x
[
offset
[
0
][
i
]:
offset
[
0
][
i
+
1
],
:]
seq_len
=
offset
[
0
][
i
+
1
]
-
offset
[
0
][
i
]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
/
np
.
sqrt
(
seq_len
)
compute_seqpool_sqrt
(
x
,
offset
,
out
)
class
TestSeqLastPool
(
TestSeqAvgPool
):
...
...
@@ -122,7 +127,7 @@ class TestSeqAvgPool2D(TestSeqAvgPool):
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
3
,
17
]).
astype
(
'float32'
)
lod
=
[[
4
,
1
,
3
,
5
]]
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
offset
=
self
.
convert_to_offset
(
lod
)
offset
=
convert_to_offset
(
lod
)
out
=
np
.
zeros
((
4
,
3
,
17
)).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
...
...
@@ -167,7 +172,7 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D):
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
3
,
11
]).
astype
(
'float32'
)
lod
=
[[
4
,
1
,
3
,
5
]]
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
offset
=
self
.
convert_to_offset
(
lod
)
offset
=
convert_to_offset
(
lod
)
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
l
=
offset
[
0
][
i
+
1
]
-
offset
[
0
][
i
]
x
[
offset
[
0
][
i
]
+
np
.
random
.
randint
(
l
),
:]
+=
1.0
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录