Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
44e7fcdd
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
44e7fcdd
编写于
2月 25, 2019
作者:
X
Xin Pan
提交者:
GitHub
2月 25, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15844 from panyx0718/infer
add per kernel config and remove const_cast.
上级
dec9cf53
5dd281f7
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
251 addition
and
192 deletion
+251
-192
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+16
-2
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+35
-2
paddle/fluid/framework/operator_kernel_configs.h
paddle/fluid/framework/operator_kernel_configs.h
+118
-0
paddle/fluid/framework/var_type_traits.h
paddle/fluid/framework/var_type_traits.h
+0
-5
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+2
-1
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+14
-5
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+3
-2
paddle/fluid/operators/beam_search_decode_op.cc
paddle/fluid/operators/beam_search_decode_op.cc
+1
-1
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+14
-45
paddle/fluid/operators/conv_cudnn_op_cache.h
paddle/fluid/operators/conv_cudnn_op_cache.h
+1
-95
paddle/fluid/operators/conv_fusion_op.cu.cc
paddle/fluid/operators/conv_fusion_op.cu.cc
+9
-24
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+34
-5
paddle/fluid/platform/temporary_allocator_test.cc
paddle/fluid/platform/temporary_allocator_test.cc
+4
-4
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+0
-1
未找到文件。
paddle/fluid/framework/operator.cc
浏览文件 @
44e7fcdd
...
...
@@ -904,6 +904,16 @@ void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
this
->
InferShape
(
&
infer_shape_ctx
);
}
std
::
vector
<
KernelConfig
>*
OperatorWithKernel
::
GetKernelConfig
(
const
OpKernelType
&
key
)
const
{
auto
config_iter
=
kernel_configs_map_
.
find
(
key
);
std
::
vector
<
KernelConfig
>*
kernel_configs
=
nullptr
;
if
(
config_iter
!=
kernel_configs_map_
.
end
())
{
kernel_configs
=
&
(
config_iter
->
second
);
}
return
kernel_configs
;
}
void
OperatorWithKernel
::
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
RuntimeContext
ctx
(
Inputs
(),
Outputs
(),
scope
);
...
...
@@ -921,7 +931,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
auto
expected_kernel_key
=
this
->
GetExpectedKernelType
(
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
,
ctx
));
ExecutionContext
(
*
this
,
scope
,
*
dev_ctx
,
ctx
,
nullptr
));
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
...
...
@@ -940,6 +950,9 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
KernelTypeToString
(
expected_kernel_key
));
}
std
::
vector
<
KernelConfig
>*
kernel_configs
=
GetKernelConfig
(
expected_kernel_key
);
// do data transformScope &transfer_scope;
std
::
vector
<
std
::
string
>
transfered_inplace_vars
;
auto
*
transfer_scope
=
...
...
@@ -957,7 +970,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
this
->
InferShape
(
&
infer_shape_ctx
);
// TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
// not Scope. Imperative mode only pass inputs and get outputs.
kernel_iter
->
second
(
ExecutionContext
(
*
this
,
exec_scope
,
*
dev_ctx
,
ctx
));
kernel_iter
->
second
(
ExecutionContext
(
*
this
,
exec_scope
,
*
dev_ctx
,
ctx
,
kernel_configs
));
if
(
!
transfered_inplace_vars
.
empty
())
{
// there is inplace variable has been transfered.
...
...
paddle/fluid/framework/operator.h
浏览文件 @
44e7fcdd
...
...
@@ -28,6 +28,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
...
...
@@ -184,12 +185,30 @@ class OperatorBase {
const
platform
::
Place
&
place
)
const
=
0
;
};
#ifdef PADDLE_WITH_CUDA
using
KernelConfig
=
boost
::
variant
<
std
::
shared_ptr
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
,
std
::
shared_ptr
<
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>>
,
std
::
shared_ptr
<
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>>>
;
#else
using
KernelConfig
=
boost
::
variant
<
boost
::
blank
>
;
#endif
using
OpKernelConfigsMap
=
std
::
unordered_map
<
OpKernelType
,
std
::
vector
<
KernelConfig
>
,
OpKernelType
::
Hash
>
;
class
ExecutionContext
{
public:
ExecutionContext
(
const
OperatorBase
&
op
,
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
device_context
,
const
RuntimeContext
&
ctx
)
:
op_
(
op
),
scope_
(
scope
),
device_context_
(
device_context
),
ctx_
(
ctx
)
{}
const
RuntimeContext
&
ctx
,
std
::
vector
<
KernelConfig
>*
configs
)
:
op_
(
op
),
scope_
(
scope
),
device_context_
(
device_context
),
ctx_
(
ctx
),
kernel_configs_
(
configs
)
{}
const
OperatorBase
&
op
()
const
{
return
op_
;
}
...
...
@@ -398,11 +417,20 @@ class ExecutionContext {
return
temp_tensor
;
}
template
<
typename
T
>
T
&
GetKernelConfig
(
int
idx
)
const
{
PADDLE_ENFORCE
(
kernel_configs_
&&
kernel_configs_
->
size
()
>
idx
,
"%s selected kernel doesn't have kernel config %lu <= %d"
,
op_
.
Type
().
c_str
(),
kernel_configs_
->
size
(),
idx
);
return
*
boost
::
get
<
std
::
shared_ptr
<
T
>>
(
kernel_configs_
->
at
(
idx
));
}
private:
const
OperatorBase
&
op_
;
const
Scope
&
scope_
;
const
platform
::
DeviceContext
&
device_context_
;
const
RuntimeContext
&
ctx_
;
mutable
std
::
vector
<
KernelConfig
>*
kernel_configs_
;
};
template
<>
...
...
@@ -483,6 +511,8 @@ class OperatorWithKernel : public OperatorBase {
virtual
OpKernelType
GetExpectedKernelType
(
const
ExecutionContext
&
ctx
)
const
;
std
::
vector
<
KernelConfig
>*
GetKernelConfig
(
const
OpKernelType
&
key
)
const
;
protected:
virtual
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
Tensor
&
tensor
,
...
...
@@ -508,6 +538,9 @@ class OperatorWithKernel : public OperatorBase {
void
TransferInplaceVarsBack
(
const
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
inplace_vars
,
const
Scope
&
exec_scope
)
const
;
protected:
mutable
OpKernelConfigsMap
kernel_configs_map_
;
};
extern
bool
OpSupportGPU
(
const
std
::
string
&
op_type
);
...
...
paddle/fluid/framework/operator_kernel_configs.h
0 → 100644
浏览文件 @
44e7fcdd
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <unordered_map>
#include <vector>
namespace
paddle
{
namespace
framework
{
// Not thread-safe. Should be owned per-kernel.
template
<
typename
TAlgorithm
>
class
AlgorithmsCache
{
public:
AlgorithmsCache
()
:
search_times_
(
0
)
{
hash_
.
clear
();
}
// Caches the best algorithm for a given
// combination of tensor dimensions & compute data type.
TAlgorithm
GetAlgorithm
(
const
std
::
vector
<
int64_t
>&
dims1
,
const
std
::
vector
<
int64_t
>&
dims2
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
int
algorithmFlags
,
// can set for different data type
std
::
function
<
TAlgorithm
()
>
gen_func
);
TAlgorithm
GetAlgorithm
(
int64_t
area
,
int
search_times
,
int
algorithmFlags
,
std
::
function
<
TAlgorithm
()
>
gen_func
);
private:
std
::
unordered_map
<
int64_t
,
TAlgorithm
>
hash_
;
int
search_times_
;
};
template
<
typename
TAlgorithm
>
TAlgorithm
framework
::
AlgorithmsCache
<
TAlgorithm
>::
GetAlgorithm
(
const
std
::
vector
<
int64_t
>&
dims1
,
const
std
::
vector
<
int64_t
>&
dims2
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
int
algorithmFlags
,
std
::
function
<
TAlgorithm
()
>
gen_func
)
{
int64_t
seed
=
0
;
// Hash all of the inputs, use to try and look up a previously
// discovered algorithm, or fall back to generating a new one.
std
::
hash
<
int64_t
>
hashFn
;
// do hash like boost
// https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
for
(
const
auto
num
:
dims1
)
{
seed
^=
hashFn
(
num
)
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
);
}
for
(
const
auto
num
:
dims2
)
{
seed
^=
hashFn
(
num
)
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
1
;
}
for
(
const
auto
num
:
strides
)
{
seed
^=
hashFn
(
static_cast
<
int64_t
>
(
num
))
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
2
;
}
for
(
const
auto
num
:
paddings
)
{
seed
^=
hashFn
(
static_cast
<
int64_t
>
(
num
))
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
3
;
}
for
(
const
auto
num
:
dilations
)
{
seed
^=
hashFn
(
static_cast
<
int64_t
>
(
num
))
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
4
;
}
seed
^=
hashFn
(
static_cast
<
int64_t
>
(
algorithmFlags
))
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
5
;
if
(
seed
==
0
)
return
gen_func
();
if
(
hash_
.
find
(
seed
)
==
hash_
.
end
())
{
TAlgorithm
value
=
gen_func
();
hash_
[
seed
]
=
value
;
}
return
hash_
[
seed
];
}
template
<
typename
TAlgorithm
>
TAlgorithm
AlgorithmsCache
<
TAlgorithm
>::
GetAlgorithm
(
int64_t
area
,
int
search_times
,
int
algorithmFlags
,
std
::
function
<
TAlgorithm
()
>
gen_func
)
{
if
(
hash_
.
find
(
area
)
!=
hash_
.
end
())
{
return
hash_
[
area
];
}
if
(
search_times_
<
search_times
)
{
auto
algo
=
gen_func
();
hash_
[
area
]
=
algo
;
++
search_times_
;
return
algo
;
}
TAlgorithm
algo
;
int64_t
min
=
static_cast
<
uint64_t
>
(
INT_MAX
);
for
(
const
auto
&
m
:
hash_
)
{
if
(
m
.
first
<
min
)
{
min
=
m
.
first
;
algo
=
m
.
second
;
}
}
return
algo
;
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/var_type_traits.h
浏览文件 @
44e7fcdd
...
...
@@ -50,8 +50,6 @@ class Scope;
}
// namespace framework
namespace
operators
{
template
<
typename
T
>
class
AlgorithmsCache
;
class
CudnnRNNCache
;
...
...
@@ -144,9 +142,6 @@ using VarTypeRegistry = detail::VarTypeRegistryImpl<
#ifndef _WIN32
ncclUniqueId
,
platform
::
Communicator
,
#endif
operators
::
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>
,
operators
::
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>
,
operators
::
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>
,
operators
::
CudnnRNNCache
,
#endif
int
,
float
>
;
...
...
paddle/fluid/imperative/layer.cc
浏览文件 @
44e7fcdd
...
...
@@ -249,7 +249,8 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
framework
::
Scope
scope
;
PreparedOp
p
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
place_
);
p
.
op
.
RuntimeInferShape
(
scope
,
place_
,
ctx
);
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
));
p
.
func
(
framework
::
ExecutionContext
(
p
.
op
,
scope
,
*
p
.
dev_ctx
,
p
.
ctx
,
nullptr
));
}
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
44e7fcdd
...
...
@@ -44,8 +44,13 @@ class PreparedOp {
PreparedOp
(
const
framework
::
OperatorBase
&
op
,
const
framework
::
RuntimeContext
&
ctx
,
framework
::
OperatorWithKernel
::
OpKernelFunc
func
,
platform
::
DeviceContext
*
dev_ctx
)
:
op
(
op
),
ctx
(
ctx
),
func
(
func
),
dev_ctx
(
dev_ctx
)
{}
platform
::
DeviceContext
*
dev_ctx
,
std
::
vector
<
framework
::
KernelConfig
>*
kernel_configs
)
:
op
(
op
),
ctx
(
ctx
),
func
(
func
),
dev_ctx
(
dev_ctx
),
kernel_configs
(
kernel_configs
)
{}
static
PreparedOp
Prepare
(
const
framework
::
RuntimeContext
&
ctx
,
const
framework
::
OperatorWithKernel
&
op
,
...
...
@@ -64,8 +69,9 @@ class PreparedOp {
framework
::
OperatorWithKernel
::
OpKernelMap
&
kernels
=
kernels_iter
->
second
;
auto
expected_kernel_key
=
op
.
GetExpectedKernelType
(
framework
::
ExecutionContext
(
op
,
framework
::
Scope
(),
*
dev_ctx
,
ctx
));
auto
expected_kernel_key
=
op
.
GetExpectedKernelType
(
framework
::
ExecutionContext
(
op
,
framework
::
Scope
(),
*
dev_ctx
,
ctx
,
nullptr
));
VLOG
(
3
)
<<
"expected_kernel_key:"
<<
expected_kernel_key
;
auto
kernel_iter
=
kernels
.
find
(
expected_kernel_key
);
...
...
@@ -83,7 +89,9 @@ class PreparedOp {
PADDLE_THROW
(
"op %s does not have kernel for %s"
,
op
.
Type
(),
KernelTypeToString
(
expected_kernel_key
));
}
return
PreparedOp
(
op
,
ctx
,
kernel_iter
->
second
,
dev_ctx
);
std
::
vector
<
framework
::
KernelConfig
>*
kernel_configs
=
op
.
GetKernelConfig
(
expected_kernel_key
);
return
PreparedOp
(
op
,
ctx
,
kernel_iter
->
second
,
dev_ctx
,
kernel_configs
);
}
inline
platform
::
DeviceContext
*
GetDeviceContext
()
const
{
return
dev_ctx
;
}
...
...
@@ -92,6 +100,7 @@ class PreparedOp {
const
framework
::
RuntimeContext
&
ctx
;
framework
::
OperatorWithKernel
::
OpKernelFunc
func
;
platform
::
DeviceContext
*
dev_ctx
;
std
::
vector
<
framework
::
KernelConfig
>*
kernel_configs
;
};
class
OpBase
;
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
44e7fcdd
...
...
@@ -138,8 +138,9 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
op
->
place_
=
GetExpectedPlace
(
expected_place
,
inputs
);
PreparedOp
prepared_op
=
PreparedOp
::
Prepare
(
ctx
,
*
op_kernel
,
op
->
place_
);
prepared_op
.
op
.
RuntimeInferShape
(
scope
,
op
->
place_
,
ctx
);
prepared_op
.
func
(
framework
::
ExecutionContext
(
prepared_op
.
op
,
scope
,
*
prepared_op
.
dev_ctx
,
prepared_op
.
ctx
));
prepared_op
.
func
(
framework
::
ExecutionContext
(
prepared_op
.
op
,
scope
,
*
prepared_op
.
dev_ctx
,
prepared_op
.
ctx
,
prepared_op
.
kernel_configs
));
if
(
!
stop_gradient
)
{
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
...
...
paddle/fluid/operators/beam_search_decode_op.cc
浏览文件 @
44e7fcdd
...
...
@@ -123,7 +123,7 @@ class BeamSearchDecodeOp : public framework::OperatorBase {
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
framework
::
RuntimeContext
run_ctx
(
Inputs
(),
Outputs
(),
scope
);
framework
::
ExecutionContext
ctx
(
*
this
,
scope
,
dev_ctx
,
run_ctx
);
framework
::
ExecutionContext
ctx
(
*
this
,
scope
,
dev_ctx
,
run_ctx
,
nullptr
);
const
LoDTensorArray
*
ids
=
ctx
.
Input
<
LoDTensorArray
>
(
"Ids"
);
const
LoDTensorArray
*
scores
=
ctx
.
Input
<
LoDTensorArray
>
(
"Scores"
);
...
...
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
44e7fcdd
...
...
@@ -42,6 +42,7 @@ using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using
DataLayout
=
platform
::
DataLayout
;
template
<
typename
T
>
using
ScalingParamType
=
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
;
using
framework
::
AlgorithmsCache
;
template
<
typename
T
>
class
CUDNNConvOpKernel
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -169,18 +170,8 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
workspace_size_limit
,
&
algo
));
VLOG
(
3
)
<<
"cuDNN forward algo "
<<
algo
;
}
else
if
(
exhaustive_search
&&
(
!
half_float
))
{
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>*
algo_cache
=
nullptr
;
if
(
ctx
.
scope
().
FindVar
(
kCUDNNFwdAlgoCache
))
{
algo_cache
=
ctx
.
scope
()
.
FindVar
(
kCUDNNFwdAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
}
else
{
algo_cache
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
(
kCUDNNFwdAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
}
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>&
algo_cache
=
ctx
.
GetKernelConfig
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
(
0
);
cudnn_workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
platform
::
CUDADeviceContext
>
(
framework
::
make_ddim
(
...
...
@@ -188,7 +179,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
dev_ctx
);
cudnn_workspace_ptr
=
static_cast
<
void
*>
(
cudnn_workspace
.
data
<
int8_t
>
());
algo
=
algo_cache
->
GetAlgorithm
(
algo
=
algo_cache
.
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
int
returned_algo_count
;
std
::
array
<
cudnnConvolutionFwdAlgoPerf_t
,
kNUM_CUDNN_FWD_ALGS
>
...
...
@@ -382,22 +373,11 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
exhaustive_search
)
{
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>*
data_algo_cache
;
if
(
ctx
.
scope
().
FindVar
(
kCUDNNBwdDataAlgoCache
))
{
data_algo_cache
=
ctx
.
scope
()
.
FindVar
(
kCUDNNBwdDataAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>>
();
}
else
{
data_algo_cache
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
(
kCUDNNBwdDataAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>>
();
}
data_algo
=
data_algo_cache
->
GetAlgorithm
(
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>&
data_algo_cache
=
ctx
.
GetKernelConfig
<
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>>
(
0
);
data_algo
=
data_algo_cache
.
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
int
returned_algo_count
;
std
::
array
<
cudnnConvolutionBwdDataAlgoPerf_t
,
...
...
@@ -448,22 +428,11 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
if
(
filter_grad
)
{
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
exhaustive_search
)
{
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>*
f_algo_cache
;
if
(
ctx
.
scope
().
FindVar
(
kCUDNNBwdFilterAlgoCache
))
{
f_algo_cache
=
ctx
.
scope
()
.
FindVar
(
kCUDNNBwdFilterAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>>
();
}
else
{
f_algo_cache
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
(
kCUDNNBwdFilterAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>>
();
}
filter_algo
=
f_algo_cache
->
GetAlgorithm
(
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>&
f_algo_cache
=
ctx
.
GetKernelConfig
<
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>>
(
1
);
filter_algo
=
f_algo_cache
.
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
int
returned_algo_count
;
std
::
array
<
cudnnConvolutionBwdFilterAlgoPerf_t
,
...
...
paddle/fluid/operators/conv_cudnn_op_cache.h
浏览文件 @
44e7fcdd
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <functional>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/cudnn_helper.h"
DECLARE_uint64
(
conv_workspace_size_limit
);
...
...
@@ -46,100 +47,5 @@ static constexpr size_t kNUM_CUDNN_BWD_FILTER_ALGS = 4;
static
constexpr
size_t
kNUM_CUDNN_BWD_DATA_ALGS
=
5
;
#endif
template
<
typename
TAlgorithm
>
class
AlgorithmsCache
{
public:
AlgorithmsCache
()
:
search_times_
(
0
)
{
hash_
.
clear
();
}
// Caches the best algorithm for a given
// combination of tensor dimensions & compute data type.
TAlgorithm
GetAlgorithm
(
const
std
::
vector
<
int64_t
>&
dims1
,
const
std
::
vector
<
int64_t
>&
dims2
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
int
algorithmFlags
,
// can set for different data type
std
::
function
<
TAlgorithm
()
>
gen_func
);
TAlgorithm
GetAlgorithm
(
int64_t
area
,
int
search_times
,
int
algorithmFlags
,
std
::
function
<
TAlgorithm
()
>
gen_func
);
private:
std
::
unordered_map
<
int64_t
,
TAlgorithm
>
hash_
;
std
::
mutex
mutex_
;
int
search_times_
;
};
template
<
typename
TAlgorithm
>
TAlgorithm
AlgorithmsCache
<
TAlgorithm
>::
GetAlgorithm
(
const
std
::
vector
<
int64_t
>&
dims1
,
const
std
::
vector
<
int64_t
>&
dims2
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
int
algorithmFlags
,
std
::
function
<
TAlgorithm
()
>
gen_func
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
int64_t
seed
=
0
;
// Hash all of the inputs, use to try and look up a previously
// discovered algorithm, or fall back to generating a new one.
std
::
hash
<
int64_t
>
hashFn
;
// do hash like boost
// https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
for
(
const
auto
num
:
dims1
)
{
seed
^=
hashFn
(
num
)
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
);
}
for
(
const
auto
num
:
dims2
)
{
seed
^=
hashFn
(
num
)
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
1
;
}
for
(
const
auto
num
:
strides
)
{
seed
^=
hashFn
(
static_cast
<
int64_t
>
(
num
))
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
2
;
}
for
(
const
auto
num
:
paddings
)
{
seed
^=
hashFn
(
static_cast
<
int64_t
>
(
num
))
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
3
;
}
for
(
const
auto
num
:
dilations
)
{
seed
^=
hashFn
(
static_cast
<
int64_t
>
(
num
))
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
4
;
}
seed
^=
hashFn
(
static_cast
<
int64_t
>
(
algorithmFlags
))
+
0x9e3779b9
+
(
seed
<<
6
)
+
(
seed
>>
2
)
+
5
;
if
(
seed
==
0
)
return
gen_func
();
if
(
hash_
.
find
(
seed
)
==
hash_
.
end
())
{
TAlgorithm
value
=
gen_func
();
hash_
[
seed
]
=
value
;
}
return
hash_
[
seed
];
}
template
<
typename
TAlgorithm
>
TAlgorithm
AlgorithmsCache
<
TAlgorithm
>::
GetAlgorithm
(
int64_t
area
,
int
search_times
,
int
algorithmFlags
,
std
::
function
<
TAlgorithm
()
>
gen_func
)
{
if
(
hash_
.
find
(
area
)
!=
hash_
.
end
())
{
return
hash_
[
area
];
}
if
(
search_times_
<
search_times
)
{
auto
algo
=
gen_func
();
hash_
[
area
]
=
algo
;
++
search_times_
;
return
algo
;
}
TAlgorithm
algo
;
int64_t
min
=
static_cast
<
uint64_t
>
(
INT_MAX
);
for
(
const
auto
&
m
:
hash_
)
{
if
(
m
.
first
<
min
)
{
min
=
m
.
first
;
algo
=
m
.
second
;
}
}
return
algo
;
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/conv_fusion_op.cu.cc
浏览文件 @
44e7fcdd
...
...
@@ -30,6 +30,8 @@ using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using
ScopedConvolutionDescriptor
=
platform
::
ScopedConvolutionDescriptor
;
using
ScopedActivationDescriptor
=
platform
::
ScopedActivationDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
using
framework
::
AlgorithmsCache
;
template
<
typename
T
>
using
ScalingParamType
=
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
;
...
...
@@ -139,38 +141,21 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
}
return
fwd_perf_stat
[
0
].
algo
;
};
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>*
algo_cache
=
nullptr
;
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>&
algo_cache
=
ctx
.
GetKernelConfig
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
(
0
);
int
search_times
=
ctx
.
Attr
<
int
>
(
"search_times"
);
search_times
=
std
::
max
(
static_cast
<
int
>
(
FLAGS_cudnn_exhaustive_search_times
),
search_times
);
// TODO(dangqingqing): Unify this if-else.
if
(
search_times
>
0
)
{
// The searched algo will be cached by `search_times` times for
// different input dimension. For other dimensions, select the algo
// of closest area.
auto
var_name
=
ctx
.
Inputs
(
"AlgoCache"
)[
0
];
algo_cache
=
ctx
.
scope
()
.
FindVar
(
var_name
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
algo
=
algo_cache
->
GetAlgorithm
(
x_dims
[
2
]
*
x_dims
[
3
],
search_times
,
0
,
search_func
);
algo
=
algo_cache
.
GetAlgorithm
(
x_dims
[
2
]
*
x_dims
[
3
],
search_times
,
0
,
search_func
);
}
else
{
// Cache searched algo in Var(kCUDNNFwdAlgoCache).
// all conv ops use the same kCUDNNFwdAlgoCache variable.
if
(
ctx
.
scope
().
FindVar
(
kCUDNNFwdAlgoCache
))
{
algo_cache
=
ctx
.
scope
()
.
FindVar
(
kCUDNNFwdAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
}
else
{
// TODO(qingqing) remove const_cast
algo_cache
=
const_cast
<
framework
::
Scope
*>
(
ctx
.
scope
().
parent
())
->
Var
(
kCUDNNFwdAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
}
algo
=
algo_cache
->
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
search_func
);
algo
=
algo_cache
.
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
search_func
);
}
VLOG
(
3
)
<<
"choose algo "
<<
algo
;
}
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
44e7fcdd
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
...
...
@@ -109,8 +110,20 @@ framework::OpKernelType ConvOp::GetExpectedKernelType(
"float16 can only be used when CUDNN is used"
);
}
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout
,
library
,
customized_type_value
);
auto
type
=
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout
,
library
,
customized_type_value
);
#ifdef PADDLE_WITH_CUDA
std
::
vector
<
framework
::
KernelConfig
>&
configs
=
kernel_configs_map_
[
type
];
// TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
// to false. It should be fixed and then here should only create if library
// is kCUDNN.
if
(
configs
.
empty
())
{
std
::
shared_ptr
<
framework
::
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
p
(
new
framework
::
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>
());
configs
.
push_back
(
p
);
}
#endif
return
type
;
}
void
Conv2DOpMaker
::
Make
()
{
...
...
@@ -410,9 +423,25 @@ framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
}
#endif
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
(),
ctx
.
GetPlace
(),
layout_
,
library_
,
customized_type_value
);
auto
type
=
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
(),
ctx
.
GetPlace
(),
layout_
,
library_
,
customized_type_value
);
#ifdef PADDLE_WITH_CUDA
if
(
library_
==
framework
::
LibraryType
::
kCUDNN
)
{
std
::
vector
<
framework
::
KernelConfig
>&
configs
=
kernel_configs_map_
[
type
];
if
(
configs
.
empty
())
{
std
::
shared_ptr
<
framework
::
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>>
p
(
new
framework
::
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>
());
configs
.
push_back
(
p
);
std
::
shared_ptr
<
framework
::
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>>
p2
(
new
framework
::
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>
());
configs
.
push_back
(
p2
);
}
}
#endif
return
type
;
}
class
Conv2dGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
...
...
paddle/fluid/platform/temporary_allocator_test.cc
浏览文件 @
44e7fcdd
...
...
@@ -141,7 +141,7 @@ TEST(temporary_allocator, create_tensor_with_allocationptr) {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
static_cast
<
platform
::
CPUDeviceContext
*>
(
pool
.
Get
(
cpu_place
));
framework
::
ExecutionContext
ctx
(
op
,
scope
,
*
dev_ctx
,
run_ctx
);
framework
::
ExecutionContext
ctx
(
op
,
scope
,
*
dev_ctx
,
run_ctx
,
nullptr
);
int
numel
=
memory_size
/
sizeof
(
float
);
framework
::
Tensor
tensor
=
...
...
@@ -156,7 +156,7 @@ TEST(temporary_allocator, create_tensor_with_allocationptr) {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
pool
.
Get
(
gpu_place
));
framework
::
ExecutionContext
ctx
(
op
,
scope
,
*
dev_ctx
,
run_ctx
);
framework
::
ExecutionContext
ctx
(
op
,
scope
,
*
dev_ctx
,
run_ctx
,
nullptr
);
int
numel
=
memory_size
/
sizeof
(
float
);
framework
::
Tensor
tensor
=
ctx
.
AllocateTmpTensor
<
float
,
platform
::
CUDADeviceContext
>
(
...
...
@@ -179,7 +179,7 @@ TEST(temporary_allocator, create_tensor_with_allocationptr2) {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
static_cast
<
platform
::
CPUDeviceContext
*>
(
pool
.
Get
(
cpu_place
));
framework
::
ExecutionContext
ctx
(
op
,
scope
,
*
dev_ctx
,
run_ctx
);
framework
::
ExecutionContext
ctx
(
op
,
scope
,
*
dev_ctx
,
run_ctx
,
nullptr
);
int
numel
=
memory_size
/
sizeof
(
float
);
framework
::
Tensor
out_side_tensor
;
...
...
@@ -200,7 +200,7 @@ TEST(temporary_allocator, create_tensor_with_allocationptr2) {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
pool
.
Get
(
gpu_place
));
framework
::
ExecutionContext
ctx
(
op
,
scope
,
*
dev_ctx
,
run_ctx
);
framework
::
ExecutionContext
ctx
(
op
,
scope
,
*
dev_ctx
,
run_ctx
,
nullptr
);
size_t
memory_size
=
500
;
int
numel
=
memory_size
/
sizeof
(
float
);
...
...
python/paddle/fluid/framework.py
浏览文件 @
44e7fcdd
...
...
@@ -732,7 +732,6 @@ class Operator(object):
self
.
_update_desc_attr
(
attr_name
,
attr_val
)
self
.
desc
.
check_attrs
()
if
self
.
_has_kernel
(
type
):
self
.
desc
.
infer_var_type
(
self
.
block
.
desc
)
self
.
desc
.
infer_shape
(
self
.
block
.
desc
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录