提交 44b30055 编写于 作者: Q Qiao Longfei

change min_row_size_to_use_multithread to parameter of adam

test=develop
上级 87b4eb1d
...@@ -30,7 +30,6 @@ DEFINE_bool(check_nan_inf, false, ...@@ -30,7 +30,6 @@ DEFINE_bool(check_nan_inf, false,
"Checking whether operator produce NAN/INF or not. It will be " "Checking whether operator produce NAN/INF or not. It will be "
"extremely slow so please use this flag wisely."); "extremely slow so please use this flag wisely.");
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op"); DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
DEFINE_int32(min_row_size_to_use_multithread, 0, "");
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -35,7 +35,6 @@ limitations under the License. */ ...@@ -35,7 +35,6 @@ limitations under the License. */
#include "paddle/fluid/platform/variant.h" #include "paddle/fluid/platform/variant.h"
DECLARE_int32(inner_op_parallelism); DECLARE_int32(inner_op_parallelism);
DECLARE_int32(min_row_size_to_use_multithread);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -114,6 +114,13 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -114,6 +114,13 @@ class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) " "(bool, default false) "
"only update the parameter that has gradient in sparse update") "only update the parameter that has gradient in sparse update")
.SetDefault(false); .SetDefault(false);
AddAttr<int64_t>("min_row_size_to_use_multithread",
"(int64_t, default 0) "
"when not zero, if param row size is larger then "
"min_row_size_to_use_multithread and "
"inner_op_parallelism is larger then 0, sparse update "
"will run in multithread mode")
.SetDefault(0);
AddComment(R"DOC( AddComment(R"DOC(
Adam Optimizer. Adam Optimizer.
......
...@@ -354,6 +354,8 @@ class AdamOpKernel : public framework::OpKernel<T> { ...@@ -354,6 +354,8 @@ class AdamOpKernel : public framework::OpKernel<T> {
using paddle::framework::LoDTensor; using paddle::framework::LoDTensor;
using paddle::operators::detail::Ref; using paddle::operators::detail::Ref;
int64_t min_row_size_to_use_multithread =
ctx.Attr<int64_t>("min_row_size_to_use_multithread");
bool lazy_mode = ctx.Attr<bool>("lazy_mode"); bool lazy_mode = ctx.Attr<bool>("lazy_mode");
T beta1 = static_cast<T>(ctx.Attr<float>("beta1")); T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
T beta2 = static_cast<T>(ctx.Attr<float>("beta2")); T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
...@@ -478,12 +480,12 @@ class AdamOpKernel : public framework::OpKernel<T> { ...@@ -478,12 +480,12 @@ class AdamOpKernel : public framework::OpKernel<T> {
} }
} }
} else if (FLAGS_inner_op_parallelism > 1 && } else if (FLAGS_inner_op_parallelism > 1 &&
FLAGS_min_row_size_to_use_multithread > 0 && min_row_size_to_use_multithread > 0 &&
param.dims()[0] > FLAGS_min_row_size_to_use_multithread) { param.dims()[0] > min_row_size_to_use_multithread) {
VLOG(3) << "use multi thread, inner_op_parallelism=" VLOG(3) << "use multi thread, inner_op_parallelism="
<< FLAGS_inner_op_parallelism << FLAGS_inner_op_parallelism
<< " min_row_size_to_use_multithread=" << " min_row_size_to_use_multithread="
<< FLAGS_min_row_size_to_use_multithread; << min_row_size_to_use_multithread;
if (FLAGS_inner_op_parallelism > 10) { if (FLAGS_inner_op_parallelism > 10) {
LOG(WARNING) << "FLAGS_inner_op_parallelism " LOG(WARNING) << "FLAGS_inner_op_parallelism "
<< FLAGS_inner_op_parallelism << " is two large!"; << FLAGS_inner_op_parallelism << " is two large!";
......
...@@ -129,8 +129,7 @@ def __bootstrap__(): ...@@ -129,8 +129,7 @@ def __bootstrap__():
'eager_delete_tensor_gb', 'fast_eager_deletion_mode', 'eager_delete_tensor_gb', 'fast_eager_deletion_mode',
'allocator_strategy', 'reader_queue_speed_test_mode', 'allocator_strategy', 'reader_queue_speed_test_mode',
'print_sub_graph_dir', 'pe_profile_fname', 'warpctc_dir', 'print_sub_graph_dir', 'pe_profile_fname', 'warpctc_dir',
'inner_op_parallelism', 'min_row_size_to_use_multithread', 'inner_op_parallelism', 'enable_parallel_graph'
'enable_parallel_graph'
] ]
if 'Darwin' not in sysstr: if 'Darwin' not in sysstr:
read_env_flags.append('use_pinned_memory') read_env_flags.append('use_pinned_memory')
......
...@@ -674,6 +674,8 @@ class AdamOptimizer(Optimizer): ...@@ -674,6 +674,8 @@ class AdamOptimizer(Optimizer):
may be very slow. The lazy mode only update the element that has gradient is the current may be very slow. The lazy mode only update the element that has gradient is the current
mini-batch, so it will be much more faster. But this mode has different semantics with the mini-batch, so it will be much more faster. But this mode has different semantics with the
original Adam algorithm and may lead to different result. original Adam algorithm and may lead to different result.
min_row_size_to_use_multithread: if adam use sparse update and the param rows is very large,
you can use FLAGS_inner_op_parallelism and this flag to enable multi thread optimize.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -694,7 +696,8 @@ class AdamOptimizer(Optimizer): ...@@ -694,7 +696,8 @@ class AdamOptimizer(Optimizer):
epsilon=1e-8, epsilon=1e-8,
regularization=None, regularization=None,
name=None, name=None,
lazy_mode=False): lazy_mode=False,
min_row_size_to_use_multithread=0):
assert learning_rate is not None assert learning_rate is not None
assert beta1 is not None assert beta1 is not None
assert beta2 is not None assert beta2 is not None
...@@ -708,6 +711,7 @@ class AdamOptimizer(Optimizer): ...@@ -708,6 +711,7 @@ class AdamOptimizer(Optimizer):
self._beta2 = beta2 self._beta2 = beta2
self._epsilon = epsilon self._epsilon = epsilon
self._lazy_mode = lazy_mode self._lazy_mode = lazy_mode
self._min_row_size_to_use_multithread = min_row_size_to_use_multithread
def _create_accumulators(self, block, parameters): def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block) assert isinstance(block, framework.Block)
...@@ -762,7 +766,9 @@ class AdamOptimizer(Optimizer): ...@@ -762,7 +766,9 @@ class AdamOptimizer(Optimizer):
"beta1": self._beta1, "beta1": self._beta1,
"beta2": self._beta2, "beta2": self._beta2,
"epsilon": self._epsilon, "epsilon": self._epsilon,
"lazy_mode": self._lazy_mode "lazy_mode": self._lazy_mode,
"min_row_size_to_use_multithread":
self._min_row_size_to_use_multithread
}, },
stop_gradient=True) stop_gradient=True)
......
...@@ -87,7 +87,7 @@ list(REMOVE_ITEM TEST_OPS test_nearest_interp_op) ...@@ -87,7 +87,7 @@ list(REMOVE_ITEM TEST_OPS test_nearest_interp_op)
foreach(TEST_OP ${TEST_OPS}) foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP}) py_test_modules(${TEST_OP} MODULES ${TEST_OP})
endforeach(TEST_OP) endforeach(TEST_OP)
py_test_modules(test_adam_op_multi_thread MODULES test_adam_op ENVS FLAGS_inner_op_parallelism=4 FLAGS_min_row_size_to_use_multithread=2) py_test_modules(test_adam_op_multi_thread MODULES test_adam_op ENVS FLAGS_inner_op_parallelism=4)
py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR} SERIAL) py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR} SERIAL)
py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL) py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL)
py_test_modules(test_nearest_interp_op MODULES test_nearest_interp_op SERIAL) py_test_modules(test_nearest_interp_op MODULES test_nearest_interp_op SERIAL)
......
...@@ -261,7 +261,12 @@ class TestSparseAdamOp(unittest.TestCase): ...@@ -261,7 +261,12 @@ class TestSparseAdamOp(unittest.TestCase):
"LearningRate": np.full((1), 2.0).astype("float32") "LearningRate": np.full((1), 2.0).astype("float32")
} }
self.init_output = np.full((height, row_numel), 0.0).astype("float32") self.init_output = np.full((height, row_numel), 0.0).astype("float32")
self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} self.attrs = {
'epsilon': epsilon,
'beta1': beta1,
'beta2': beta2,
'min_row_size_to_use_multithread': 2
}
grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows = scope.var('Grad').get_selected_rows()
grad_selected_rows.set_height(height) grad_selected_rows.set_height(height)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册