Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
41b83884
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
41b83884
编写于
1月 19, 2018
作者:
Y
Yibing Liu
提交者:
GitHub
1月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7640 from kuke/add_lstm_doc
Add python doc for dynamic_lstm
上级
7869a05f
ef56e683
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
97 addition
and
1 deletion
+97
-1
paddle/operators/lstm_op.cc
paddle/operators/lstm_op.cc
+1
-1
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+96
-0
未找到文件。
paddle/operators/lstm_op.cc
浏览文件 @
41b83884
...
...
@@ -117,7 +117,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"C0"
,
"(Tensor, optional) the initial cell state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size. `H0` and `C0` can be NULL but only at the same time"
)
"batch size. `H0` and `C0` can be NULL but only at the same time
.
"
)
.
AsDispensable
();
AddInput
(
"Weight"
,
"(Tensor) the learnable hidden-hidden weights."
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
41b83884
...
...
@@ -206,6 +206,102 @@ def dynamic_lstm(input,
cell_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
dtype
=
'float32'
):
"""
**Dynamic LSTM Layer**
The defalut implementation is diagonal/peephole connection
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
.. math::
i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
\\
tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)
c_t & = f_t \odot c_{t-1} + i_t \odot
\\
tilde{c_t}
h_t & = o_t \odot act_h(c_t)
where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
the matrix of weights from the input gate to the input), :math:`W_{ic},
\
W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
our implementation, we use vectors to reprenset these diagonal weight
matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
gate bias vector), :math:`\sigma` is the non-line activations, such as
logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
gate, forget gate, output gate, and cell activation vectors, respectively,
all of which have the same size as the cell output activation vector :math:`h`.
The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
and :math:`act_h` are the cell input and cell output activation functions
and `tanh` is usually used for them. :math:`
\\
tilde{c_t}` is also called
candidate hidden state, which is computed based on the current input and
the previous hidden state.
Set `use_peepholes` to `False` to disable peephole connection. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details.
Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
operations on the input :math:`x_{t}` are NOT included in this operator.
Users can choose to use fully-connect layer before LSTM layer.
Args:
input(Variable): The input of dynamic_lstm layer, which supports
variable-time length input sequence. The underlying
tensor in this Variable is a matrix with shape
(T X 4D), where T is the total time steps in this
mini-batch, D is the hidden size.
size(int): 4 * hidden size.
param_attr(ParamAttr): The parameter attribute for the learnable
hidden-hidden weights.
- The shape is (D x 4D), where D is the hidden
size.
- Weights = {:math:`W_{ch}, W_{ih},
\
W_{fh}, W_{oh}`}
bias_attr(ParamAttr): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- The shape is (1 x 4D).
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
2. `use_peepholes = True`
- The shape is (1 x 7D).
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic},
\
W_{fc}, W_{oc}`}.
use_peepholes(bool): Whether to enable diagonal/peephole connections,
default `True`.
is_reverse(bool): Whether to compute reversed LSTM, default `False`.
gate_activation(str): The activation for input gate, forget gate and
output gate. Choices = ["sigmoid", "tanh", "relu",
"identity"], default "sigmoid".
cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
Returns:
tuple: The hidden state, and cell state of LSTM. The shape of both
\
is (T x D), and lod is the same with the `input`.
Examples:
.. code-block:: python
hidden_dim = 512
forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
act=None, bias_attr=None)
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
helper
=
LayerHelper
(
'lstm'
,
**
locals
())
size
=
size
/
4
weight
=
helper
.
create_parameter
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录