提交 40289431 编写于 作者: X xuezhong

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_bug_for_lstmp

# PaddlePaddle
English | [简体中文](./README_cn.md)
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html)
......@@ -7,7 +8,6 @@
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
Welcome to the PaddlePaddle GitHub.
PaddlePaddle (PArallel Distributed Deep LEarning) is an easy-to-use,
......@@ -18,16 +18,6 @@ learning to many products at Baidu.
Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle.
欢迎来到 PaddlePaddle GitHub
PaddlePaddle (PArallel Distributed Deep LEarning) 是一个简单易用、高效灵活、可扩展的深度学习平台,最初由百度科学家和工程师共同开发,目的是将深度学习技术应用到百度的众多产品中。
我们的愿景是让每个人都能通过PaddlePaddle接触深度学习
跟进PaddlePaddle最新特性请参考我们的[版本说明](https://github.com/PaddlePaddle/Paddle/releases)
### Latest PaddlePaddle Release: [Fluid 1.2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2)
### Install Latest Stable Release:
```
......@@ -43,23 +33,6 @@ pip install paddlepaddle-gpu==1.2.0.post85
# For installation on other platform, refer to http://paddlepaddle.org/
```
### PaddlePaddle最新版本: [Fluid 1.2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2)
### 安装最新稳定版本:
```
# Linux CPU
pip install paddlepaddle
# Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==1.2.0.post87
# Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==1.2.0.post85
# 其他平台上的安装指引请参考 http://paddlepaddle.org/
```
## Features
- **Flexibility**
......@@ -100,38 +73,10 @@ pip install paddlepaddle-gpu==1.2.0.post85
Baidu and it has achieved a significant impact. We hope you can also explore
the capability of PaddlePaddle to make an impact on your product.
## 特点
- **灵活性**
PaddlePaddle支持丰富的神经网络架构和优化算法。易于配置复杂模型,例如带有注意力机制或复杂记忆连接的神经网络机器翻译模型。
- **高效性**
为了高效使用异步计算资源,PaddlePaddle对框架的不同层进行优化,包括计算、存储、架构和通信。下面是一些样例:
- 通过SSE/AVX 内置函数、BLAS库(例如MKL、OpenBLAS、cuBLAS)或定制的CPU/GPU内核优化数学操作。
- 通过MKL-DNN库优化CNN网络
- 高度优化循环网络,无需执行 `padding` 操作即可处理 **变长** 序列
- 针对高维稀疏数据模型,优化了局部和分布式训练。
- **稳定性**
有了 PaddlePaddle,使得利用各种CPU/GPU和机器来加速训练变得简单。PaddlePaddle 通过优化通信可以实现巨大吞吐量和快速执行。
- **连接产品**
另外,PaddlePaddle 的设计也易于部署。在百度,PaddlePaddle 已经部署到含有巨大用户量的产品和服务上,包括广告点击率(CTR)预测、大规模图像分类、光学字符识别(OCR)、搜索排序,计算机病毒检测、推荐系统等等。PaddlePaddle广泛应用于百度产品中,产生了非常重要的影响。我们希望您也能探索 PaddlePaddle 的能力,为您的产品创造新的影响力和效果。
## Installation
It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html) on our website.
## 安装
推荐阅读官网上的[安装说明](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html)
## Documentation
We provide [English](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html) and
......@@ -153,37 +98,9 @@ We provide [English](http://paddlepaddle.org/documentation/docs/en/1.2/getstarte
We appreciate your contributions!
## 文档
我们提供[英文](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html)
[中文](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/index.html) 文档
- [深度学习101](https://github.com/PaddlePaddle/book)
或许您想从这个在线交互式书籍开始,可以在Jupyter Notebook中运行
- [分布式训练](http://paddlepaddle.org/documentation/docs/zh/1.2/user_guides/howto/training/cluster_howto.html)
可以在MPI集群上运行分布式训练任务
- [Python API](http://paddlepaddle.org/documentation/docs/zh/1.2/api_cn/index_cn.html)
新的API支持代码更少更简洁的程序
- [贡献方式](http://paddlepaddle.org/documentation/docs/zh/1.2/advanced_usage/development/contribute_to_paddle/index_cn.html)
欢迎您的贡献!
## Ask Questions
You are welcome to submit questions and bug reports as [Github Issues](https://github.com/PaddlePaddle/Paddle/issues).
## 答疑
欢迎您将问题和bug报告以[Github Issues](https://github.com/PaddlePaddle/Paddle/issues)的形式提交
## Copyright and License
PaddlePaddle is provided under the [Apache-2.0 license](LICENSE).
## 版权和许可证
PaddlePaddle由[Apache-2.0 license](LICENSE)提供
# PaddlePaddle
[English](./README.md) | 简体中文
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/index.html)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
欢迎来到 PaddlePaddle GitHub
PaddlePaddle (PArallel Distributed Deep LEarning) 是一个简单易用、高效灵活、可扩展的深度学习平台,最初由百度科学家和工程师共同开发,目的是将深度学习技术应用到百度的众多产品中。
我们的愿景是让每个人都能通过PaddlePaddle接触深度学习
跟进PaddlePaddle最新特性请参考我们的[版本说明](https://github.com/PaddlePaddle/Paddle/releases)
### PaddlePaddle最新版本: [Fluid 1.2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2)
### 安装最新稳定版本:
```
# Linux CPU
pip install paddlepaddle
# Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==1.2.0.post87
# Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==1.2.0.post85
# 其他平台上的安装指引请参考 http://paddlepaddle.org/
```
## 特性
- **灵活性**
PaddlePaddle支持丰富的神经网络架构和优化算法。易于配置复杂模型,例如带有注意力机制或复杂记忆连接的神经网络机器翻译模型。
- **高效性**
为了高效使用异步计算资源,PaddlePaddle对框架的不同层进行优化,包括计算、存储、架构和通信。下面是一些样例:
- 通过SSE/AVX 内置函数、BLAS库(例如MKL、OpenBLAS、cuBLAS)或定制的CPU/GPU内核优化数学操作。
- 通过MKL-DNN库优化CNN网络
- 高度优化循环网络,无需执行 `padding` 操作即可处理 **变长** 序列
- 针对高维稀疏数据模型,优化了局部和分布式训练。
- **稳定性**
有了 PaddlePaddle,使得利用各种CPU/GPU和机器来加速训练变得简单。PaddlePaddle 通过优化通信可以实现巨大吞吐量和快速执行。
- **与产品相连**
另外,PaddlePaddle 的设计也易于部署。在百度,PaddlePaddle 已经部署到含有巨大用户量的产品和服务上,包括广告点击率(CTR)预测、大规模图像分类、光学字符识别(OCR)、搜索排序,计算机病毒检测、推荐系统等等。PaddlePaddle广泛应用于百度产品中,产生了非常重要的影响。我们希望您也能探索 PaddlePaddle 的能力,为您的产品创造新的影响力和效果。
## 安装
推荐阅读官网上的[安装说明](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html)
## 文档
我们提供[英文](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html)
[中文](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/index.html) 文档
- [深度学习101](https://github.com/PaddlePaddle/book)
或许您想从这个在线交互式书籍开始,可以在Jupyter Notebook中运行
- [分布式训练](http://paddlepaddle.org/documentation/docs/zh/1.2/user_guides/howto/training/cluster_howto.html)
可以在MPI集群上运行分布式训练任务
- [Python API](http://paddlepaddle.org/documentation/docs/zh/1.2/api_cn/index_cn.html)
新的API支持代码更少更简洁的程序
- [贡献方式](http://paddlepaddle.org/documentation/docs/zh/1.2/advanced_usage/development/contribute_to_paddle/index_cn.html)
欢迎您的贡献!
## 答疑
欢迎您将问题和bug报告以[Github Issues](https://github.com/PaddlePaddle/Paddle/issues)的形式提交
## 版权和许可证
PaddlePaddle由[Apache-2.0 license](LICENSE)提供
......@@ -324,7 +324,8 @@ paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes',
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_clip ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
......@@ -361,6 +362,9 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.contrib.Calibrator.__init__ ArgSpec(args=['self'], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.contrib.Calibrator.sample_data ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.Calibrator.save_int8_model ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.reader.ctr_reader.ctr_reader ArgSpec(args=['feed_dict', 'file_type', 'file_format', 'dense_slot_index', 'sparse_slot_index', 'capacity', 'thread_num', 'batch_size', 'file_list', 'slots', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.build_compressor ArgSpec(args=['place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'config'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.__init__ ArgSpec(args=['self', 'place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'program_exe'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
......
......@@ -65,6 +65,7 @@ pass_library(conv_elementwise_add2_act_fuse_pass inference)
pass_library(conv_elementwise_add_fuse_pass inference)
pass_library(conv_affine_channel_fuse_pass inference)
pass_library(transpose_flatten_concat_fuse_pass inference)
pass_library(identity_scale_op_clean_pass base)
# There may be many transpose-flatten structures in a model, and the output of
# these structures will be used as inputs to the concat Op. This pattern will
......
......@@ -117,11 +117,6 @@ bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
// return false;
}
}
for (auto &item : pdnodes2nodes_) {
for (auto &n : item.second) {
GetMarkedNodes(const_cast<Graph *>(&graph)).insert(n);
}
}
VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
return !pdnodes2nodes_.empty();
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/identity_scale_op_clean_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
std::unique_ptr<ir::Graph> IdentityScaleOpCleanPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
FusePassBase::Init("identity_scale_op_clean", graph.get());
// pre_op -> scale_in -> scale_op -> scale_out
// ->
// pre_op -> scale_out
GraphPatternDetector detector;
auto pre_op = detector.mutable_pattern()->NewNode("pre_op")->assert_is_op();
auto scale_in = detector.mutable_pattern()
->NewNode("scale_in")
->assert_is_op_input("scale")
->AsIntermediate();
auto scale_op = detector.mutable_pattern()
->NewNode("scale_fuse")
->assert_is_op("scale")
->assert_op_attr<float>("scale", 1.)
->assert_op_attr<float>("bias", 0.);
auto scale_out = detector.mutable_pattern()
->NewNode("scale_out")
->assert_is_op_output("scale");
pre_op->LinksTo({scale_in});
scale_op->LinksFrom({scale_in}).LinksTo({scale_out});
GraphPatternDetector::handle_t handler = [&](
const GraphPatternDetector::subgraph_t& subgraph, Graph* graph) {
Node* scale_op_var = subgraph.at(scale_op);
Node* scale_in_var = subgraph.at(scale_in);
Node* scale_out_var = subgraph.at(scale_out);
Node* pre_op_var = subgraph.at(pre_op);
// Link pre_op directly to scale_out
const std::string scale_in_name = scale_in_var->Name();
const std::string scale_out_name = scale_out_var->Name();
// Remove links in graph
GraphSafeRemoveNodes(graph, {scale_in_var, scale_op_var});
// Modify proto message
auto* pre_op_desc = pre_op_var->Op();
for (auto& parameter : *pre_op_desc->Proto()->mutable_outputs()) {
auto* arguments = parameter.mutable_arguments();
auto it = std::find(arguments->begin(), arguments->end(), scale_in_name);
PADDLE_ENFORCE(it != arguments->end());
*it = scale_out_name;
}
IR_NODE_LINK_TO(pre_op_var, scale_out_var);
};
detector(graph.get(), handler);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(identity_scale_op_clean_pass,
paddle::framework::ir::IdentityScaleOpCleanPass);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace paddle {
namespace framework {
namespace ir {
class IdentityScaleOpCleanPass : public FusePassBase {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
private:
virtual ~IdentityScaleOpCleanPass() = default;
};
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -22,11 +22,7 @@ limitations under the License. */
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/string/printf.h"
DEFINE_bool(benchmark, false,
"Doing memory benchmark. It will make deleting scope synchronized, "
"and add some memory usage logs."
"Default cuda is asynchronous device, set to True will"
"force op run in synchronous mode.");
DECLARE_bool(benchmark);
DEFINE_bool(
eager_delete_scope, true,
......
......@@ -83,7 +83,6 @@ void IRPassManager::CreatePasses(Argument *argument,
new std::string(GetOrCreateModelOptCacheDir(model_opt_cache_dir)));
}
// graph_ = pass->Apply(std::move(graph_));
pre_pass = pass_name;
passes_.emplace_back(std::move(pass));
......@@ -97,8 +96,9 @@ std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) {
PADDLE_ENFORCE(graph.get());
// Apply all the passes
for (const auto &pass : passes_) {
if (pass->Type() == "graph_viz_pass") continue;
PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type());
if (pass->Type() != "graph_viz_pass") {
PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type());
}
graph = pass->Apply(std::move(graph));
}
return std::move(graph);
......
......@@ -318,4 +318,9 @@ NativeConfig AnalysisConfig::ToNativeConfig() const {
return config;
}
void AnalysisConfig::SwitchIrDebug(int x) {
ir_debug_ = x;
Update();
}
} // namespace paddle
......@@ -58,7 +58,8 @@ namespace {
bool IsPersistable(const framework::VarDesc *var) {
if (var->Persistable() &&
var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
var->GetType() != framework::proto::VarType::FETCH_LIST) {
var->GetType() != framework::proto::VarType::FETCH_LIST &&
var->GetType() != framework::proto::VarType::RAW) {
return true;
}
return false;
......
......@@ -196,7 +196,7 @@ TEST(AnalysisPredictor, memory_optim) {
AnalysisConfig config(FLAGS_dirname);
config.DisableGpu();
config.EnableMemoryOptim(true);
config.pass_builder()->TurnOnDebug();
config.SwitchIrDebug();
auto native_predictor =
CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
......
......@@ -140,9 +140,12 @@ struct AnalysisConfig {
*/
bool tensorrt_engine_enabled() const { return use_tensorrt_; }
/** Control whther to debug IR graph analysis phase.
/** \brief Control whether to debug IR graph analysis phase.
*
* This will generate DOT files for visualizing the computation graph after
* each analysis pass applied.
*/
void SwitchIrDebug(int x = true) { ir_debug_ = x; }
void SwitchIrDebug(int x = true);
/** Turn on MKLDNN.
*/
......
......@@ -117,6 +117,7 @@ class CpuPassStrategy : public PassStrategy {
"conv_bn_fuse_pass", //
"conv_eltwiseadd_bn_fuse_pass", //
"is_test_pass", //
"identity_scale_op_clean_pass", //
});
use_gpu_ = false;
}
......@@ -155,6 +156,7 @@ class GpuPassStrategy : public PassStrategy {
GpuPassStrategy() : PassStrategy({}) {
passes_.assign({
"infer_clean_graph_pass", //
"identity_scale_op_clean_pass", //
"conv_affine_channel_fuse_pass", //
"conv_eltwiseadd_affine_channel_fuse_pass", //
"conv_bn_fuse_pass", //
......
......@@ -128,9 +128,9 @@ inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv
"${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz" SERIAL)
# bert, max_len=20
set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert20")
download_model_and_data(${BERT_INSTALL_DIR} "bert_model.tar.gz" "bert_data_len20.txt.tar.gz")
# bert, max_len=20, embedding_dim=128
set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert_emb128")
download_model_and_data(${BERT_INSTALL_DIR} "bert_emb128_model.tar.gz" "bert_data_len20.txt.tar.gz")
inference_analysis_api_test(test_analyzer_bert ${BERT_INSTALL_DIR} analyzer_bert_tester.cc SERIAL)
# anakin
......
......@@ -142,7 +142,7 @@ void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->pass_builder()->TurnOnDebug();
cfg->SwitchIrDebug();
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
if (use_mkldnn) {
cfg->EnableMKLDNN();
......
......@@ -69,7 +69,7 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
TEST(Analyzer_Text_Classification, profile) {
AnalysisConfig cfg;
SetConfig(&cfg);
cfg.pass_builder()->TurnOnDebug();
cfg.SwitchIrDebug();
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
......
cc_library(benchmark SRCS benchmark.cc DEPS enforce)
cc_test(test_benchmark SRCS benchmark_tester.cc DEPS benchmark)
#cc_binary(visualizer SRCS visualizer.cc DEPS analysis
# paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
cc_binary(visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
......@@ -35,6 +35,7 @@ DEFINE_bool(init_allocated_mem, false,
"To find this error in time, we use init_allocated_mem to indicate "
"that initializing the allocated memory with a small value "
"during unit testing.");
DECLARE_bool(benchmark);
DECLARE_double(fraction_of_gpu_memory_to_use);
namespace paddle {
......@@ -59,11 +60,6 @@ size_t memory_usage(const platform::Place &p);
using BuddyAllocator = detail::BuddyAllocator;
std::unordered_map</*device id*/ int,
std::pair</*current memory usage*/ uint64_t,
/*peak memory usage*/ uint64_t>>
gpu_mem_info;
BuddyAllocator *GetCPUBuddyAllocator() {
// We tried thread_local for inference::RNN1 model, but that not works much
// for multi-thread test.
......@@ -144,6 +140,8 @@ BuddyAllocator *GetGPUBuddyAllocator(int gpu_id) {
devices = platform::GetSelectedDevices();
int gpu_num = devices.size();
allocation::GPUMemMonitor.Initialize(devices.size());
a_arr = new BuddyAllocator *[gpu_num];
for (size_t i = 0; i < devices.size(); ++i) {
int dev_id = devices[i];
......@@ -204,12 +202,7 @@ void *Alloc<platform::CUDAPlace>(const platform::CUDAPlace &place,
<< string::HumanReadableSize(Used<platform::CUDAPlace>(place));
platform::SetDeviceId(cur_dev);
} else {
gpu_mem_info[place.device].first += size;
if (gpu_mem_info[place.device].first > gpu_mem_info[place.device].second) {
gpu_mem_info[place.device].second = gpu_mem_info[place.device].first;
VLOG(3) << "device: " << place.device << " peak memory usage : "
<< (gpu_mem_info[place.device].second >> 20) << " MiB";
}
if (FLAGS_benchmark) allocation::GPUMemMonitor.Add(place.device, size);
if (FLAGS_init_allocated_mem) {
cudaMemset(ptr, 0xEF, size);
}
......@@ -225,7 +218,7 @@ void Free<platform::CUDAPlace>(const platform::CUDAPlace &place, void *p,
size_t size) {
#ifdef PADDLE_WITH_CUDA
GetGPUBuddyAllocator(place.device)->Free(p);
gpu_mem_info[place.device].first -= size;
if (FLAGS_benchmark) allocation::GPUMemMonitor.Minus(place.device, size);
#else
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
......@@ -335,6 +328,8 @@ size_t Usage::operator()(const platform::CUDAPinnedPlace &cuda_pinned) const {
namespace allocation {
LegacyMemMonitor GPUMemMonitor;
Allocation *LegacyAllocator::AllocateImpl(size_t size, Allocator::Attr attr) {
void *ptr = boost::apply_visitor(legacy::AllocVisitor(size), place_);
return new Allocation(ptr, size, place_);
......@@ -346,6 +341,63 @@ void LegacyAllocator::Free(Allocation *allocation) {
allocation->place());
delete allocation;
}
bool MemInfo::Add(const size_t &size) {
std::lock_guard<std::mutex> lock(mutex_);
usage_ += size;
bool peak_point = usage_ > peak_usage_;
if (peak_point) peak_usage_ = usage_;
return peak_point;
}
void MemInfo::Minus(const size_t &size) {
std::lock_guard<std::mutex> lock(mutex_);
usage_ -= size;
}
uint64_t MemInfo::GetPeakUsage() { return peak_usage_; }
LegacyMemMonitor::~LegacyMemMonitor() {
for (auto &item : gpu_mem_info_) delete item.second;
}
void LegacyMemMonitor::Initialize(const int &device_num) {
for (auto i = 0; i < device_num; ++i) {
gpu_mem_info_[i] = new MemInfo();
}
}
void LegacyMemMonitor::Add(const int &device, const size_t &size) {
if (gpu_mem_info_[device]->Add(size)) {
VLOG(3) << "#LegacyMemMonitor# device: " << device
<< " peak memory usage : "
<< (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB";
}
}
void LegacyMemMonitor::Minus(const int &device, const size_t &size) {
gpu_mem_info_[device]->Minus(size);
}
uint64_t LegacyMemMonitor::GetMemUsage(const int &device) {
return gpu_mem_info_.find(device) == gpu_mem_info_.end()
? 0
: gpu_mem_info_[device]->GetPeakUsage();
}
void LegacyMemMonitor::PrintMemUsage() {
std::vector<int> devices;
for (const auto &item : gpu_mem_info_) {
devices.emplace_back(item.first);
}
std::sort(devices.begin(), devices.end());
for (const auto &device : devices) {
std::cout << "Device : " << device << " Peak Memory Usage : "
<< (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB"
<< std::endl;
}
}
} // namespace allocation
} // namespace memory
} // namespace paddle
......@@ -13,12 +13,59 @@
// limitations under the License.
#pragma once
#include <algorithm>
#include <mutex> // NOLINT
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace memory {
namespace allocation {
class MemInfo {
public:
MemInfo() : usage_(0), peak_usage_(0) {}
MemInfo(const MemInfo &) = delete;
MemInfo &operator=(const MemInfo &) = delete;
// return a flag to indicate current operation will create a peak point or not
bool Add(const size_t &);
void Minus(const size_t &);
uint64_t GetPeakUsage();
private:
/* current memory usage*/
uint64_t usage_;
uint64_t peak_usage_;
std::mutex mutex_;
};
class LegacyMemMonitor {
public:
// used to store the GPU memory usage of each devices
using MemUsage = std::unordered_map</*device id*/ int,
/*mem usage info node*/ MemInfo *>;
MemUsage GetMemUsageInfo() { return gpu_mem_info_; }
~LegacyMemMonitor();
void Initialize(const int &);
void Add(const int &, const size_t &);
void Minus(const int &, const size_t &);
uint64_t GetMemUsage(const int &);
void PrintMemUsage();
protected:
MemUsage gpu_mem_info_;
};
extern LegacyMemMonitor GPUMemMonitor;
class LegacyAllocatorPrivate;
class LegacyAllocator : public Allocator {
public:
......
......@@ -589,8 +589,10 @@ class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
op->SetInput("SavedVariance", Output("SavedVariance"));
// used when setting use_global_stats True during training
op->SetInput("Mean", Output("MeanOut"));
op->SetInput("Variance", Output("VarianceOut"));
if (boost::get<bool>(GetAttr("use_global_stats"))) {
op->SetInput("Mean", Output("MeanOut"));
op->SetInput("Variance", Output("VarianceOut"));
}
op->SetAttrMap(Attrs());
......
......@@ -31,6 +31,8 @@ detection_library(polygon_box_transform_op SRCS polygon_box_transform_op.cc
polygon_box_transform_op.cu)
detection_library(rpn_target_assign_op SRCS rpn_target_assign_op.cc)
detection_library(generate_proposal_labels_op SRCS generate_proposal_labels_op.cc)
detection_library(box_clip_op SRCS box_clip_op.cc box_clip_op.cu)
detection_library(yolov3_loss_op SRCS yolov3_loss_op.cc)
if(WITH_GPU)
detection_library(generate_proposals_op SRCS generate_proposals_op.cc generate_proposals_op.cu DEPS memory cub)
......
......@@ -99,5 +99,29 @@ void BboxOverlaps(const framework::Tensor& r_boxes,
}
}
template <class T>
void ClipTiledBoxes(const platform::DeviceContext& ctx,
const framework::Tensor& im_info,
const framework::Tensor& input_boxes,
framework::Tensor* out) {
T* out_data = out->mutable_data<T>(ctx.GetPlace());
const T* im_info_data = im_info.data<T>();
const T* input_boxes_data = input_boxes.data<T>();
T zero(0);
T im_w = round(im_info_data[1] / im_info_data[2]);
T im_h = round(im_info_data[0] / im_info_data[2]);
for (int64_t i = 0; i < input_boxes.numel(); ++i) {
if (i % 4 == 0) {
out_data[i] = std::max(std::min(input_boxes_data[i], im_w - 1), zero);
} else if (i % 4 == 1) {
out_data[i] = std::max(std::min(input_boxes_data[i], im_h - 1), zero);
} else if (i % 4 == 2) {
out_data[i] = std::max(std::min(input_boxes_data[i], im_w - 1), zero);
} else {
out_data[i] = std::max(std::min(input_boxes_data[i], im_h - 1), zero);
}
}
}
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/box_clip_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
class BoxClipOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of BoxClipOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("ImInfo"),
"Input(ImInfo) of BoxClipOp should not be null.");
auto input_box_dims = ctx->GetInputDim("Input");
auto im_info_dims = ctx->GetInputDim("ImInfo");
if (ctx->IsRuntime()) {
auto input_box_size = input_box_dims.size();
PADDLE_ENFORCE_EQ(input_box_dims[input_box_size - 1], 4,
"The last dimension of Input must be 4");
PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
"The rank of Input(Input) in BoxClipOp must be 2");
PADDLE_ENFORCE_EQ(im_info_dims[1], 3,
"The last dimension of ImInfo must be 3");
}
ctx->ShareDim("Input", /*->*/ "Output");
ctx->ShareLoD("Input", /*->*/ "Output");
}
};
class BoxClipOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input",
"(LoDTensor) "
"Input is a LoDTensor with shape [..., 4] holds 4 points"
"in last dimension in format [xmin, ymin, xmax, ymax]");
AddInput("ImInfo",
"(Tensor) Information for image reshape is in shape (N, 3), "
"in format (height, width, im_scale)");
AddOutput("Output",
"(LoDTensor) "
"Output is a LoDTensor with the same shape as Input"
"and it is the result after clip");
AddComment(R"DOC(
This operator clips input boxes to original input images.
For each input box, The formula is given as follows:
$$xmin = \max(\min(xmin, im_w - 1), 0)$$
$$ymin = \max(\min(ymin, im_h - 1), 0)$$
$$xmax = \max(\min(xmax, im_w - 1), 0)$$
$$ymax = \max(\min(ymax, im_h - 1), 0)$$
where im_w and im_h are computed from ImInfo, the formula is given as follows:
$$im_w = \round(width / im_scale)$$
$$im_h = \round(height / im_scale)$$
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(box_clip, ops::BoxClipOp, ops::BoxClipOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
box_clip, ops::BoxClipKernel<paddle::platform::CPUDeviceContext, float>,
ops::BoxClipKernel<paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/box_clip_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTenso = framework::LoDTensor;
static constexpr int ImInfoSize = 3;
template <typename T, int BlockSize>
static __global__ void GPUBoxClip(const T *input, const size_t *lod,
const size_t width, const T *im_info,
T *output) {
T im_w = round(im_info[blockIdx.x * ImInfoSize + 1] /
im_info[blockIdx.x * ImInfoSize + 2]);
T im_h = round(im_info[blockIdx.x * ImInfoSize] /
im_info[blockIdx.x * ImInfoSize + 2]);
for (int i = threadIdx.x; i < (lod[blockIdx.x + 1] - lod[blockIdx.x]) * width;
i += BlockSize) {
int idx = lod[blockIdx.x] * width + i;
T im_size = (idx % 2 == 0) ? im_w : im_h;
output[idx] = max(min(input[idx], im_size - 1), T(0.));
}
}
template <typename DeviceContext, typename T>
class GPUBoxClipKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
"This kernel only runs on GPU device.");
auto *input = context.Input<LoDTensor>("Input");
auto *im_info = context.Input<Tensor>("ImInfo");
auto *output = context.Output<LoDTensor>("Output");
const int64_t num = input->dims()[0];
const int64_t bbox_width = input->numel() / num;
auto lod = input->lod();
framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);
auto &dev_ctx = context.template device_context<DeviceContext>();
auto stream = dev_ctx.stream();
const size_t batch_size = lod.back().size() - 1;
T *output_data = output->mutable_data<T>(dev_ctx.GetPlace());
GPUBoxClip<T, 512><<<batch_size, 512, 0, stream>>>(
input->data<T>(), abs_offset_lod[0].CUDAMutableData(dev_ctx.GetPlace()),
bbox_width, im_info->data<T>(), output_data);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
box_clip, ops::GPUBoxClipKernel<paddle::platform::CUDADeviceContext, float>,
ops::GPUBoxClipKernel<paddle::platform::CUDADeviceContext, double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename DeviceContext, typename T>
class BoxClipKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input_box = context.Input<LoDTensor>("Input");
auto* im_info = context.Input<LoDTensor>("ImInfo");
auto* output_box = context.Output<LoDTensor>("Output");
auto& dev_ctx =
context.template device_context<platform::CPUDeviceContext>();
output_box->mutable_data<T>(context.GetPlace());
if (input_box->lod().size()) {
PADDLE_ENFORCE_EQ(input_box->lod().size(), 1UL,
"Only support 1 level of LoD.");
}
auto box_lod = input_box->lod().back();
int64_t n = static_cast<int64_t>(box_lod.size() - 1);
for (int i = 0; i < n; ++i) {
Tensor im_info_slice = im_info->Slice(i, i + 1);
Tensor box_slice = input_box->Slice(box_lod[i], box_lod[i + 1]);
Tensor output_slice = output_box->Slice(box_lod[i], box_lod[i + 1]);
ClipTiledBoxes<T>(dev_ctx, im_info_slice, box_slice, &output_slice);
}
}
};
} // namespace operators
} // namespace paddle
......@@ -52,6 +52,10 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
step_height = step_h;
}
int num_priors = 0;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for reduction(+ : num_priors)
#endif
for (size_t i = 0; i < densities.size(); ++i) {
num_priors += (fixed_ratios.size()) * (pow(densities[i], 2));
}
......@@ -64,6 +68,17 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes).setConstant(0.0);
int step_average = static_cast<int>((step_width + step_height) * 0.5);
std::vector<float> sqrt_fixed_ratios;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for (int i = 0; i < fixed_ratios.size(); i++) {
sqrt_fixed_ratios.push_back(sqrt(fixed_ratios[i]));
}
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for (int h = 0; h < feature_height; ++h) {
for (int w = 0; w < feature_width; ++w) {
T center_x = (w + offset) * step_width;
......@@ -73,34 +88,25 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
for (size_t s = 0; s < fixed_sizes.size(); ++s) {
auto fixed_size = fixed_sizes[s];
int density = densities[s];
int shift = step_average / density;
// Generate density prior boxes with fixed ratios.
for (size_t r = 0; r < fixed_ratios.size(); ++r) {
float ar = fixed_ratios[r];
int shift = step_average / density;
float box_width_ratio = fixed_size * sqrt(ar);
float box_height_ratio = fixed_size / sqrt(ar);
float box_width_ratio = fixed_size * sqrt_fixed_ratios[r];
float box_height_ratio = fixed_size / sqrt_fixed_ratios[r];
float density_center_x = center_x - step_average / 2. + shift / 2.;
float density_center_y = center_y - step_average / 2. + shift / 2.;
for (int di = 0; di < density; ++di) {
for (int dj = 0; dj < density; ++dj) {
float center_x_temp =
center_x - step_average / 2. + shift / 2. + dj * shift;
float center_y_temp =
center_y - step_average / 2. + shift / 2. + di * shift;
e_boxes(h, w, idx, 0) =
(center_x_temp - box_width_ratio / 2.) / img_width >= 0
? (center_x_temp - box_width_ratio / 2.) / img_width
: 0;
e_boxes(h, w, idx, 1) =
(center_y_temp - box_height_ratio / 2.) / img_height >= 0
? (center_y_temp - box_height_ratio / 2.) / img_height
: 0;
e_boxes(h, w, idx, 2) =
(center_x_temp + box_width_ratio / 2.) / img_width <= 1
? (center_x_temp + box_width_ratio / 2.) / img_width
: 1;
e_boxes(h, w, idx, 3) =
(center_y_temp + box_height_ratio / 2.) / img_height <= 1
? (center_y_temp + box_height_ratio / 2.) / img_height
: 1;
float center_x_temp = density_center_x + dj * shift;
float center_y_temp = density_center_y + di * shift;
e_boxes(h, w, idx, 0) = std::max(
(center_x_temp - box_width_ratio / 2.) / img_width, 0.);
e_boxes(h, w, idx, 1) = std::max(
(center_y_temp - box_height_ratio / 2.) / img_height, 0.);
e_boxes(h, w, idx, 2) = std::min(
(center_x_temp + box_width_ratio / 2.) / img_width, 1.);
e_boxes(h, w, idx, 3) = std::min(
(center_y_temp + box_height_ratio / 2.) / img_height, 1.);
idx++;
}
}
......@@ -131,8 +137,14 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
vars->Resize({box_num, static_cast<int>(variances.size())});
auto e_vars = framework::EigenMatrix<T, Eigen::RowMajor>::From(*vars);
e_vars = var_et.broadcast(Eigen::DSizes<int, 2>(box_num, 1));
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for (int i = 0; i < box_num; ++i) {
for (int j = 0; j < variances.size(); ++j) {
e_vars(i, j) = variances[j];
}
}
vars->Resize(var_dim);
boxes->Resize(box_dim);
......
......@@ -9,7 +9,7 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
......@@ -29,23 +29,33 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"Input(GTLabel) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Loss"),
"Output(Loss) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("ObjectnessMask"),
"Output(ObjectnessMask) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
"Output(GTMatchMask) of Yolov3LossOp should not be null.");
auto dim_x = ctx->GetInputDim("X");
auto dim_gtbox = ctx->GetInputDim("GTBox");
auto dim_gtlabel = ctx->GetInputDim("GTLabel");
auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
int anchor_num = anchors.size() / 2;
auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
int mask_num = anchor_mask.size();
auto class_num = ctx->Attrs().Get<int>("class_num");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
"Input(X) dim[3] and dim[4] should be euqal.");
PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
"Input(X) dim[1] should be equal to (anchor_number * (5 "
"+ class_num)).");
PADDLE_ENFORCE_EQ(
dim_x[1], mask_num * (5 + class_num),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num)).");
PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
"Input(GTBox) should be a 3-D tensor");
PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
"Input(GTBox) should be a 2-D tensor");
"Input(GTLabel) should be a 2-D tensor");
PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
"Input(GTBox) and Input(GTLabel) dim[0] should be same");
PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
......@@ -54,11 +64,22 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"Attr(anchors) length should be greater then 0.");
PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
"Attr(anchors) length should be even integer.");
for (size_t i = 0; i < anchor_mask.size(); i++) {
PADDLE_ENFORCE_LT(
anchor_mask[i], anchor_num,
"Attr(anchor_mask) should not crossover Attr(anchors).");
}
PADDLE_ENFORCE_GT(class_num, 0,
"Attr(class_num) should be an integer greater then 0.");
std::vector<int64_t> dim_out({1});
std::vector<int64_t> dim_out({dim_x[0]});
ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
ctx->SetOutputDim("ObjectnessMask", framework::make_ddim(dim_obj_mask));
std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
ctx->SetOutputDim("GTMatchMask", framework::make_ddim(dim_gt_match_mask));
}
protected:
......@@ -73,11 +94,11 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input tensor of YOLO v3 loss operator, "
"The input tensor of YOLOv3 loss operator, "
"This is a 4-D tensor with shape of [N, C, H, W]."
"H and W should be same, and the second dimention(C) stores"
"box locations, confidence score and classification one-hot"
"key of each anchor box");
"keys of each anchor box");
AddInput("GTBox",
"The input tensor of ground truth boxes, "
"This is a 3-D tensor with shape of [N, max_box_num, 5], "
......@@ -89,32 +110,39 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("GTLabel",
"The input tensor of ground truth label, "
"This is a 2-D tensor with shape of [N, max_box_num], "
"and each element shoudl be an integer to indicate the "
"and each element should be an integer to indicate the "
"box class id.");
AddOutput("Loss",
"The output yolov3 loss tensor, "
"This is a 1-D tensor with shape of [1]");
"This is a 1-D tensor with shape of [N]");
AddOutput("ObjectnessMask",
"This is an intermediate tensor with shape of [N, M, H, W], "
"M is the number of anchor masks. This parameter caches the "
"mask for calculate objectness loss in gradient kernel.")
.AsIntermediate();
AddOutput("GTMatchMask",
"This is an intermediate tensor with shape of [N, B], "
"B is the max box number of GT boxes. This parameter caches "
"matched mask index of each GT boxes for gradient calculate.")
.AsIntermediate();
AddAttr<int>("class_num", "The number of classes to predict.");
AddAttr<std::vector<int>>("anchors",
"The anchor width and height, "
"it will be parsed pair by pair.");
"it will be parsed pair by pair.")
.SetDefault(std::vector<int>{});
AddAttr<std::vector<int>>("anchor_mask",
"The mask index of anchors used in "
"current YOLOv3 loss calculation.")
.SetDefault(std::vector<int>{});
AddAttr<int>("downsample_ratio",
"The downsample ratio from network input to YOLOv3 loss "
"input, so 32, 16, 8 should be set for the first, second, "
"and thrid YOLOv3 loss operators.")
.SetDefault(32);
AddAttr<float>("ignore_thresh",
"The ignore threshold to ignore confidence loss.");
AddAttr<float>("loss_weight_xy", "The weight of x, y location loss.")
.SetDefault(1.0);
AddAttr<float>("loss_weight_wh", "The weight of w, h location loss.")
.SetDefault(1.0);
AddAttr<float>(
"loss_weight_conf_target",
"The weight of confidence score loss in locations with target object.")
.SetDefault(1.0);
AddAttr<float>("loss_weight_conf_notarget",
"The weight of confidence score loss in locations without "
"target object.")
.SetDefault(1.0);
AddAttr<float>("loss_weight_class", "The weight of classification loss.")
.SetDefault(1.0);
"The ignore threshold to ignore confidence loss.")
.SetDefault(0.7);
AddComment(R"DOC(
This operator generate yolov3 loss by given predict result and ground
truth boxes.
......@@ -147,17 +175,28 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the yolov3 loss consist of three major parts, box location loss,
confidence score loss, and classification loss. The MSE loss is used for
box location, and binary cross entropy loss is used for confidence score
loss and classification loss.
confidence score loss, and classification loss. The L2 loss is used for
box coordinates (w, h), and sigmoid cross entropy loss is used for box
coordinates (x, y), confidence score loss and classification loss.
Each groud truth box find a best matching anchor box in all anchors,
prediction of this anchor box will incur all three parts of losses, and
prediction of anchor boxes with no GT box matched will only incur objectness
loss.
In order to trade off box coordinate losses between big boxes and small
boxes, box coordinate losses will be mutiplied by scale weight, which is
calculated as follow.
$$
weight_{box} = 2.0 - t_w * t_h
$$
Final loss will be represented as follow.
$$
loss = \loss_weight_{xy} * loss_{xy} + \loss_weight_{wh} * loss_{wh}
+ \loss_weight_{conf_target} * loss_{conf_target}
+ \loss_weight_{conf_notarget} * loss_{conf_notarget}
+ \loss_weight_{class} * loss_{class}
loss = (loss_{xy} + loss_{wh}) * weight_{box}
+ loss_{conf} + loss_{class}
$$
)DOC");
}
......@@ -196,6 +235,8 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op->SetInput("GTBox", Input("GTBox"));
op->SetInput("GTLabel", Input("GTLabel"));
op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
op->SetInput("ObjectnessMask", Output("ObjectnessMask"));
op->SetInput("GTMatchMask", Output("GTMatchMask"));
op->SetAttrMap(Attrs());
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T>
static inline bool LessEqualZero(T x) {
return x < 1e-6;
}
template <typename T>
static T SigmoidCrossEntropy(T x, T label) {
return (x > 0 ? x : 0.0) - x * label + std::log(1.0 + std::exp(-std::abs(x)));
}
template <typename T>
static T L2Loss(T x, T y) {
return 0.5 * (y - x) * (y - x);
}
template <typename T>
static T SigmoidCrossEntropyGrad(T x, T label) {
return 1.0 / (1.0 + std::exp(-x)) - label;
}
template <typename T>
static T L2LossGrad(T x, T y) {
return x - y;
}
static int GetMaskIndex(std::vector<int> mask, int val) {
for (size_t i = 0; i < mask.size(); i++) {
if (mask[i] == val) {
return i;
}
}
return -1;
}
template <typename T>
struct Box {
T x, y, w, h;
};
template <typename T>
static inline T sigmoid(T x) {
return 1.0 / (1.0 + std::exp(-x));
}
template <typename T>
static inline Box<T> GetYoloBox(const T* x, std::vector<int> anchors, int i,
int j, int an_idx, int grid_size,
int input_size, int index, int stride) {
Box<T> b;
b.x = (i + sigmoid<T>(x[index])) / grid_size;
b.y = (j + sigmoid<T>(x[index + stride])) / grid_size;
b.w = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] / input_size;
b.h = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] / input_size;
return b;
}
template <typename T>
static inline Box<T> GetGtBox(const T* gt, int batch, int max_boxes, int idx) {
Box<T> b;
b.x = gt[(batch * max_boxes + idx) * 4];
b.y = gt[(batch * max_boxes + idx) * 4 + 1];
b.w = gt[(batch * max_boxes + idx) * 4 + 2];
b.h = gt[(batch * max_boxes + idx) * 4 + 3];
return b;
}
template <typename T>
static inline T BoxOverlap(T c1, T w1, T c2, T w2) {
T l1 = c1 - w1 / 2.0;
T l2 = c2 - w2 / 2.0;
T left = l1 > l2 ? l1 : l2;
T r1 = c1 + w1 / 2.0;
T r2 = c2 + w2 / 2.0;
T right = r1 < r2 ? r1 : r2;
return right - left;
}
template <typename T>
static inline T CalcBoxIoU(Box<T> b1, Box<T> b2) {
T w = BoxOverlap(b1.x, b1.w, b2.x, b2.w);
T h = BoxOverlap(b1.y, b1.h, b2.y, b2.h);
T inter_area = (w < 0 || h < 0) ? 0.0 : w * h;
T union_area = b1.w * b1.h + b2.w * b2.h - inter_area;
return inter_area / union_area;
}
static inline int GetEntryIndex(int batch, int an_idx, int hw_idx, int an_num,
int an_stride, int stride, int entry) {
return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}
template <typename T>
static void CalcBoxLocationLoss(T* loss, const T* input, Box<T> gt,
std::vector<int> anchors, int an_idx,
int box_idx, int gi, int gj, int grid_size,
int input_size, int stride) {
T tx = gt.x * grid_size - gi;
T ty = gt.y * grid_size - gj;
T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);
T scale = (2.0 - gt.w * gt.h);
loss[0] += SigmoidCrossEntropy<T>(input[box_idx], tx) * scale;
loss[0] += SigmoidCrossEntropy<T>(input[box_idx + stride], ty) * scale;
loss[0] += L2Loss<T>(input[box_idx + 2 * stride], tw) * scale;
loss[0] += L2Loss<T>(input[box_idx + 3 * stride], th) * scale;
}
template <typename T>
static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
Box<T> gt, std::vector<int> anchors,
int an_idx, int box_idx, int gi, int gj,
int grid_size, int input_size, int stride) {
T tx = gt.x * grid_size - gi;
T ty = gt.y * grid_size - gj;
T tw = std::log(gt.w * input_size / anchors[2 * an_idx]);
T th = std::log(gt.h * input_size / anchors[2 * an_idx + 1]);
T scale = (2.0 - gt.w * gt.h);
input_grad[box_idx] =
SigmoidCrossEntropyGrad<T>(input[box_idx], tx) * scale * loss;
input_grad[box_idx + stride] =
SigmoidCrossEntropyGrad<T>(input[box_idx + stride], ty) * scale * loss;
input_grad[box_idx + 2 * stride] =
L2LossGrad<T>(input[box_idx + 2 * stride], tw) * scale * loss;
input_grad[box_idx + 3 * stride] =
L2LossGrad<T>(input[box_idx + 3 * stride], th) * scale * loss;
}
template <typename T>
static inline void CalcLabelLoss(T* loss, const T* input, const int index,
const int label, const int class_num,
const int stride) {
for (int i = 0; i < class_num; i++) {
T pred = input[index + i * stride];
loss[0] += SigmoidCrossEntropy<T>(pred, (i == label) ? 1.0 : 0.0);
}
}
template <typename T>
static inline void CalcLabelLossGrad(T* input_grad, const T loss,
const T* input, const int index,
const int label, const int class_num,
const int stride) {
for (int i = 0; i < class_num; i++) {
T pred = input[index + i * stride];
input_grad[index + i * stride] =
SigmoidCrossEntropyGrad<T>(pred, (i == label) ? 1.0 : 0.0) * loss;
}
}
template <typename T>
static inline void CalcObjnessLoss(T* loss, const T* input, const T* objness,
const int n, const int an_num, const int h,
const int w, const int stride,
const int an_stride) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < an_num; j++) {
for (int k = 0; k < h; k++) {
for (int l = 0; l < w; l++) {
T obj = objness[k * w + l];
if (obj > 1e-5) {
// positive sample: obj = 1
loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 1.0);
} else if (obj > -0.5) {
// negetive sample: obj = 0
loss[i] += SigmoidCrossEntropy<T>(input[k * w + l], 0.0);
}
}
}
objness += stride;
input += an_stride;
}
}
}
template <typename T>
static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
const T* input, const T* objness,
const int n, const int an_num,
const int h, const int w,
const int stride, const int an_stride) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < an_num; j++) {
for (int k = 0; k < h; k++) {
for (int l = 0; l < w; l++) {
T obj = objness[k * w + l];
if (obj > 1e-5) {
input_grad[k * w + l] =
SigmoidCrossEntropyGrad<T>(input[k * w + l], 1.0) * loss[i];
} else if (obj > -0.5) {
input_grad[k * w + l] =
SigmoidCrossEntropyGrad<T>(input[k * w + l], 0.0) * loss[i];
}
}
}
objness += stride;
input += an_stride;
input_grad += an_stride;
}
}
}
template <typename T>
static void inline GtValid(bool* valid, const T* gtbox, const int n,
const int b) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < b; j++) {
if (LessEqualZero(gtbox[j * 4 + 2]) || LessEqualZero(gtbox[j * 4 + 3])) {
valid[j] = false;
} else {
valid[j] = true;
}
}
valid += b;
gtbox += b * 4;
}
}
template <typename T>
class Yolov3LossKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* gt_box = ctx.Input<Tensor>("GTBox");
auto* gt_label = ctx.Input<Tensor>("GTLabel");
auto* loss = ctx.Output<Tensor>("Loss");
auto* objness_mask = ctx.Output<Tensor>("ObjectnessMask");
auto* gt_match_mask = ctx.Output<Tensor>("GTMatchMask");
auto anchors = ctx.Attr<std::vector<int>>("anchors");
auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
int class_num = ctx.Attr<int>("class_num");
float ignore_thresh = ctx.Attr<float>("ignore_thresh");
int downsample_ratio = ctx.Attr<int>("downsample_ratio");
const int n = input->dims()[0];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int an_num = anchors.size() / 2;
const int mask_num = anchor_mask.size();
const int b = gt_box->dims()[1];
int input_size = downsample_ratio * h;
const int stride = h * w;
const int an_stride = (class_num + 5) * stride;
const T* input_data = input->data<T>();
const T* gt_box_data = gt_box->data<T>();
const int* gt_label_data = gt_label->data<int>();
T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
memset(loss_data, 0, loss->numel() * sizeof(T));
T* obj_mask_data =
objness_mask->mutable_data<T>({n, mask_num, h, w}, ctx.GetPlace());
memset(obj_mask_data, 0, objness_mask->numel() * sizeof(T));
int* gt_match_mask_data =
gt_match_mask->mutable_data<int>({n, b}, ctx.GetPlace());
// calc valid gt box mask, avoid calc duplicately in following code
Tensor gt_valid_mask;
bool* gt_valid_mask_data =
gt_valid_mask.mutable_data<bool>({n, b}, ctx.GetPlace());
GtValid<T>(gt_valid_mask_data, gt_box_data, n, b);
for (int i = 0; i < n; i++) {
for (int j = 0; j < mask_num; j++) {
for (int k = 0; k < h; k++) {
for (int l = 0; l < w; l++) {
// each predict box find a best match gt box, if overlap is bigger
// then ignore_thresh, ignore the objectness loss.
int box_idx =
GetEntryIndex(i, j, k * w + l, mask_num, an_stride, stride, 0);
Box<T> pred = GetYoloBox(input_data, anchors, l, k, anchor_mask[j],
h, input_size, box_idx, stride);
T best_iou = 0;
for (int t = 0; t < b; t++) {
if (!gt_valid_mask_data[i * b + t]) {
continue;
}
Box<T> gt = GetGtBox(gt_box_data, i, b, t);
T iou = CalcBoxIoU(pred, gt);
if (iou > best_iou) {
best_iou = iou;
}
}
// If best IoU is bigger then ignore_thresh,
// ignore the objectness loss.
if (best_iou > ignore_thresh) {
int obj_idx = (i * mask_num + j) * stride + k * w + l;
obj_mask_data[obj_idx] = static_cast<T>(-1);
}
// all losses should be calculated if best IoU
// is bigger then truth thresh, but currently,
// truth thresh is an unreachable value as 1.0.
}
}
}
for (int t = 0; t < b; t++) {
if (!gt_valid_mask_data[i * b + t]) {
gt_match_mask_data[i * b + t] = -1;
continue;
}
Box<T> gt = GetGtBox(gt_box_data, i, b, t);
int gi = static_cast<int>(gt.x * w);
int gj = static_cast<int>(gt.y * h);
Box<T> gt_shift = gt;
gt_shift.x = 0.0;
gt_shift.y = 0.0;
T best_iou = 0.0;
int best_n = 0;
// each gt box find a best match anchor box as positive sample,
// for positive sample, all losses should be calculated, and for
// other samples, only objectness loss is required.
for (int an_idx = 0; an_idx < an_num; an_idx++) {
Box<T> an_box;
an_box.x = 0.0;
an_box.y = 0.0;
an_box.w = anchors[2 * an_idx] / static_cast<T>(input_size);
an_box.h = anchors[2 * an_idx + 1] / static_cast<T>(input_size);
float iou = CalcBoxIoU<T>(an_box, gt_shift);
if (iou > best_iou) {
best_iou = iou;
best_n = an_idx;
}
}
int mask_idx = GetMaskIndex(anchor_mask, best_n);
gt_match_mask_data[i * b + t] = mask_idx;
if (mask_idx >= 0) {
int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
an_stride, stride, 0);
CalcBoxLocationLoss<T>(loss_data + i, input_data, gt, anchors, best_n,
box_idx, gi, gj, h, input_size, stride);
int obj_idx = (i * mask_num + mask_idx) * stride + gj * w + gi;
obj_mask_data[obj_idx] = 1.0;
int label = gt_label_data[i * b + t];
int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
an_stride, stride, 5);
CalcLabelLoss<T>(loss_data + i, input_data, label_idx, label,
class_num, stride);
}
}
}
CalcObjnessLoss<T>(loss_data, input_data + 4 * stride, obj_mask_data, n,
mask_num, h, w, stride, an_stride);
}
};
template <typename T>
class Yolov3LossGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* gt_box = ctx.Input<Tensor>("GTBox");
auto* gt_label = ctx.Input<Tensor>("GTLabel");
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
auto* objness_mask = ctx.Input<Tensor>("ObjectnessMask");
auto* gt_match_mask = ctx.Input<Tensor>("GTMatchMask");
auto anchors = ctx.Attr<std::vector<int>>("anchors");
auto anchor_mask = ctx.Attr<std::vector<int>>("anchor_mask");
int class_num = ctx.Attr<int>("class_num");
int downsample_ratio = ctx.Attr<int>("downsample_ratio");
const int n = input_grad->dims()[0];
const int c = input_grad->dims()[1];
const int h = input_grad->dims()[2];
const int w = input_grad->dims()[3];
const int mask_num = anchor_mask.size();
const int b = gt_match_mask->dims()[1];
int input_size = downsample_ratio * h;
const int stride = h * w;
const int an_stride = (class_num + 5) * stride;
const T* input_data = input->data<T>();
const T* gt_box_data = gt_box->data<T>();
const int* gt_label_data = gt_label->data<int>();
const T* loss_grad_data = loss_grad->data<T>();
const T* obj_mask_data = objness_mask->data<T>();
const int* gt_match_mask_data = gt_match_mask->data<int>();
T* input_grad_data =
input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
memset(input_grad_data, 0, input_grad->numel() * sizeof(T));
for (int i = 0; i < n; i++) {
for (int t = 0; t < b; t++) {
int mask_idx = gt_match_mask_data[i * b + t];
if (mask_idx >= 0) {
Box<T> gt = GetGtBox(gt_box_data, i, b, t);
int gi = static_cast<int>(gt.x * w);
int gj = static_cast<int>(gt.y * h);
int box_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
an_stride, stride, 0);
CalcBoxLocationLossGrad<T>(
input_grad_data, loss_grad_data[i], input_data, gt, anchors,
anchor_mask[mask_idx], box_idx, gi, gj, h, input_size, stride);
int label = gt_label_data[i * b + t];
int label_idx = GetEntryIndex(i, mask_idx, gj * w + gi, mask_num,
an_stride, stride, 5);
CalcLabelLossGrad<T>(input_grad_data, loss_grad_data[i], input_data,
label_idx, label, class_num, stride);
}
}
}
CalcObjnessLossGrad<T>(input_grad_data + 4 * stride, loss_grad_data,
input_data + 4 * stride, obj_mask_data, n, mask_num,
h, w, stride, an_stride);
}
};
} // namespace operators
} // namespace paddle
......@@ -79,17 +79,17 @@ void FusionRepeatedFCReluOpMaker::Make() {
}
template <typename T>
static void fc_relu(const T* x, const T* w, const T* b, T* y, int m, int n,
int k) {
static void fc_relu(const T* x, const T* w, const T* b, T* y,
const jit::matmul_attr_t& attr) {
auto matmul =
jit::Get<jit::kMatMul, jit::MatMulTuples<T>, platform::CPUPlace>(k);
jit::Get<jit::kMatMul, jit::MatMulTuples<T>, platform::CPUPlace>(attr);
auto addbias_relu =
jit::Get<jit::kVAddRelu, jit::XYZNTuples<T>, platform::CPUPlace>(n);
matmul(x, w, y, m, n, k);
jit::Get<jit::kVAddRelu, jit::XYZNTuples<T>, platform::CPUPlace>(attr.n);
matmul(x, w, y, &attr);
T* dst = y;
for (int i = 0; i < m; ++i) {
addbias_relu(b, dst, dst, n);
dst += n;
for (int i = 0; i < attr.m; ++i) {
addbias_relu(b, dst, dst, attr.n);
dst += attr.n;
}
}
......@@ -107,32 +107,33 @@ class FusionRepeatedFCReluKernel : public framework::OpKernel<T> {
auto i_dims = in->dims();
auto w_dims = weights[0]->dims();
int m = i_dims[0];
int n = w_dims[1];
int k = w_dims[0];
relus[0]->Resize({m, n});
jit::matmul_attr_t attr;
attr.m = i_dims[0];
attr.n = w_dims[1];
attr.k = w_dims[0];
relus[0]->Resize({attr.m, attr.n});
fc_relu(in->data<T>(), weights[0]->data<T>(), biases[0]->data<T>(),
relus[0]->mutable_data<T>(place), m, n, k);
relus[0]->mutable_data<T>(place), attr);
for (int i = 1; i < weight_sz - 1; ++i) {
auto i_dims = relus[i - 1]->dims();
auto w_dims = weights[i]->dims();
int m = i_dims[0];
int n = w_dims[1];
int k = w_dims[0];
relus[i]->Resize({m, n});
attr.m = i_dims[0];
attr.n = w_dims[1];
attr.k = w_dims[0];
relus[i]->Resize({attr.m, attr.n});
fc_relu(relus[i - 1]->data<T>(), weights[i]->data<T>(),
biases[i]->data<T>(), relus[i]->mutable_data<T>(place), m, n, k);
biases[i]->data<T>(), relus[i]->mutable_data<T>(place), attr);
}
auto i_dims_last = relus[weight_sz - 2]->dims();
auto w_dims_last = weights[weight_sz - 1]->dims();
m = i_dims_last[0];
n = w_dims_last[1];
k = w_dims_last[0];
attr.m = i_dims_last[0];
attr.n = w_dims_last[1];
attr.k = w_dims_last[0];
fc_relu(relus[weight_sz - 2]->data<T>(), weights[weight_sz - 1]->data<T>(),
biases[weight_sz - 1]->data<T>(), out->mutable_data<T>(place), m, n,
k);
biases[weight_sz - 1]->data<T>(), out->mutable_data<T>(place),
attr);
}
};
......
......@@ -87,15 +87,18 @@ class FusionSquaredMatSubKernel : public framework::OpKernel<T> {
auto x_dims = x->dims();
auto y_dims = y->dims();
int m = x_dims[0];
int k = x_dims[1];
int n = y_dims[1];
int o_numel = m * n;
jit::matmul_attr_t attr;
attr.m = x_dims[0];
attr.k = x_dims[1];
attr.n = y_dims[1];
int o_numel = attr.m * attr.n;
auto vsquare_x =
jit::Get<jit::kVSquare, jit::XYNTuples<T>, platform::CPUPlace>(m * k);
jit::Get<jit::kVSquare, jit::XYNTuples<T>, platform::CPUPlace>(attr.m *
attr.k);
auto vsquare_y =
jit::Get<jit::kVSquare, jit::XYNTuples<T>, platform::CPUPlace>(k * n);
jit::Get<jit::kVSquare, jit::XYNTuples<T>, platform::CPUPlace>(attr.k *
attr.n);
auto vsquare_xy =
jit::Get<jit::kVSquare, jit::XYNTuples<T>, platform::CPUPlace>(o_numel);
auto vsub =
......@@ -103,7 +106,7 @@ class FusionSquaredMatSubKernel : public framework::OpKernel<T> {
auto vscal =
jit::Get<jit::kVScal, jit::AXYNTuples<T>, platform::CPUPlace>(o_numel);
auto matmul =
jit::Get<jit::kMatMul, jit::MatMulTuples<T>, platform::CPUPlace>(k);
jit::Get<jit::kMatMul, jit::MatMulTuples<T>, platform::CPUPlace>(attr);
const T* x_data = x->data<T>();
const T* y_data = y->data<T>();
......@@ -112,12 +115,12 @@ class FusionSquaredMatSubKernel : public framework::OpKernel<T> {
T* squared_xy_data = squared_xy->mutable_data<T>(place);
T* o_data = out->mutable_data<T>(place);
matmul(x_data, y_data, squared_xy_data, m, n, k);
matmul(x_data, y_data, squared_xy_data, &attr);
vsquare_xy(squared_xy_data, squared_xy_data, o_numel);
vsquare_x(x_data, squared_x_data, m * k);
vsquare_y(y_data, squared_y_data, k * n);
matmul(squared_x_data, squared_y_data, o_data, m, n, k);
vsquare_x(x_data, squared_x_data, attr.m * attr.k);
vsquare_y(y_data, squared_y_data, attr.k * attr.n);
matmul(squared_x_data, squared_y_data, o_data, &attr);
vsub(squared_xy_data, o_data, o_data, o_numel);
vscal(&scalar, o_data, o_data, o_numel);
......
......@@ -93,6 +93,7 @@ std::vector<int> TestSizes() {
template <typename KernelTuples, typename... Args>
struct BenchFunc {
// return this function avg time
// TODO(TJ): clear cache every time
double operator()(const typename KernelTuples::func_type tgt, Args... args) {
for (int i = 0; i < FLAGS_burning; ++i) {
tgt(args...);
......@@ -172,6 +173,9 @@ void BenchXYZNKernel() {
RandomVec<T>(d, y_data);
BenchAllImpls<KT, jit::XYZNTuples<T>, PlaceType>(d, x.data<T>(),
y.data<T>(), z_data, d);
// test inplace
BenchAllImpls<KT, jit::XYZNTuples<T>, PlaceType>(d, x.data<T>(), z_data,
z_data, d);
}
}
......@@ -311,8 +315,9 @@ void BenchMatMulKernel() {
const T* a_data = a.data<T>();
const T* b_data = b.data<T>();
T* c_data = c.mutable_data<T>(PlaceType());
BenchAllImpls<KT, jit::MatMulTuples<T>, PlaceType>(k, a_data, b_data,
c_data, m, n, k);
const jit::matmul_attr_t attr{m, n, k};
BenchAllImpls<KT, jit::MatMulTuples<T>, PlaceType>(attr, a_data, b_data,
c_data, &attr);
}
}
}
......
......@@ -9,6 +9,7 @@ function(USE_JITKERNEL_GEN TARGET)
endfunction()
# use gen jitcode kernel by name
USE_JITKERNEL_GEN(kMatMul)
USE_JITKERNEL_GEN(kVMul)
USE_JITKERNEL_GEN(kVAdd)
USE_JITKERNEL_GEN(kVSub)
......
......@@ -155,7 +155,7 @@ class NCHW16CMulNCCreator : public JitCodeCreator<int> {
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx); \
return platform::MayIUse(platform::avx) && attr <= 1024; \
} \
size_t CodeSize(const int& d) const override { \
return 96 + d / YMM_FLOAT_BLOCK * 4 * 8; \
......
......@@ -61,6 +61,7 @@ class VXXJitCode : public JitCode {
base += "_Vec";
}
base += (with_relu_ ? "_Relu" : "");
base += "_D" + std::to_string(num_);
return base.c_str();
}
void genCode() override;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/matmul.h"
#include <stddef.h> // offsetof
#include <vector>
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
void MatMulJitCode::genCode() {
preCode();
int block, rest;
const auto groups = packed_groups(n_, k_, &block, &rest);
PADDLE_ENFORCE_GT(groups.front(), 0);
const int block_len = sizeof(float) * block;
const int x_reg_idx = (block == ZMM_FLOAT_BLOCK ? 32 : 16) - 1;
const int w_reg_idx = x_reg_idx - 1;
// from packed mov(reg_ptr_wgt, ptr[param_attr + offsetof(matmul_attr_t,
// packed_weight)]);
mov(reg_ptr_wgt, param_y);
size_t z_offset = 0;
size_t wgt_offset = 0;
for (size_t g = 0; g < groups.size(); ++g) {
size_t x_offset = 0;
for (int k = 0; k < k_; ++k) {
vbroadcastss(zmm_t(x_reg_idx), ptr[param_x + x_offset]);
// clean
if (k == 0) {
for (int i = 0; i < groups[g]; ++i) {
vxorps(zmm_t(i), zmm_t(i), zmm_t(i));
}
}
for (int i = 0; i < groups[g]; ++i) {
vmovups(zmm_t(w_reg_idx), ptr[reg_ptr_wgt + wgt_offset]);
vfmadd231ps(zmm_t(i), zmm_t(w_reg_idx), zmm_t(x_reg_idx));
wgt_offset += block_len;
}
// last one, save
if (k == k_ - 1) {
for (int i = 0; i < groups[g]; ++i) {
// only rest save should be careful
if (rest != 0 && g == groups.size() - 1 && i == groups[g] - 1) {
break;
}
vmovups(ptr[param_z + z_offset + i * block_len], zmm_t(i));
}
}
x_offset += sizeof(float);
}
z_offset += block_len * groups[g];
}
if (rest != 0) {
// below should refine with mask
int reg_idx = groups.back() - 1;
z_offset = (n_ - rest) * sizeof(float);
int inner_block = 8;
while (rest > 0) {
if (rest >= 8) {
inner_block = 8;
vmovups(ptr[param_z + z_offset], ymm_t(reg_idx));
// shift zmm of inner_block, change reg_idx if update
} else if (rest >= 4) {
inner_block = 4;
vmovups(ptr[param_z + z_offset], xmm_t(reg_idx));
} else if (rest >= 2) {
inner_block = 2;
vmovq(ptr[param_z + z_offset], xmm_t(reg_idx));
} else {
inner_block = 1;
vmovss(ptr[param_z + z_offset], xmm_t(reg_idx));
}
z_offset += inner_block * sizeof(float);
rest -= inner_block;
}
}
postCode();
}
class MatMulCreator : public JitCodeCreator<matmul_attr_t> {
public:
bool UseMe(const matmul_attr_t& attr) const override {
return attr.m == 1 && platform::MayIUse(platform::avx512f) &&
attr.n % ZMM_FLOAT_BLOCK == 0 && attr.k < 512;
}
size_t CodeSize(const matmul_attr_t& attr) const override {
int block = YMM_FLOAT_BLOCK;
if (platform::MayIUse(platform::avx512f)) {
block = ZMM_FLOAT_BLOCK;
}
return 96 + 4 * attr.k * (attr.n / block + 1) * 8;
}
std::unique_ptr<GenBase> CreateJitCode(
const matmul_attr_t& attr) const override {
PADDLE_ENFORCE_GT(attr.m, 0);
PADDLE_ENFORCE_GT(attr.n, 0);
PADDLE_ENFORCE_GT(attr.k, 0);
return make_unique<MatMulJitCode>(attr, CodeSize(attr));
}
};
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
namespace gen = paddle::operators::jit::gen;
REGISTER_JITKERNEL_GEN(kMatMul, gen::MatMulCreator);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <stdlib.h> // for malloc and free
#include <string>
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace jit {
namespace gen {
class MatMulJitCode : public JitCode {
public:
explicit MatMulJitCode(const matmul_attr_t& attr,
size_t code_size = 256 * 1024,
void* code_ptr = nullptr)
: JitCode(code_size, code_ptr), m_(attr.m), n_(attr.n), k_(attr.k) {
PADDLE_ENFORCE_EQ(m_, 1, "Only support m==1 yet");
this->genCode();
}
virtual const char* name() const {
std::string base = "MatMulJitCode";
base = base + "_M" + std::to_string(m_) + "_N" + std::to_string(n_) + "_K" +
std::to_string(k_);
return base.c_str();
}
void genCode() override;
private:
int m_, n_, k_;
reg64_t param_x{abi_param1};
reg64_t param_y{abi_param2};
reg64_t param_z{abi_param3};
reg64_t param_attr{abi_param4};
reg64_t reg_tmp{rax};
reg64_t reg_ptr_wgt{r10};
};
} // namespace gen
} // namespace jit
} // namespace operators
} // namespace paddle
......@@ -16,6 +16,8 @@
#include <fstream>
#include <iostream>
#include <sstream>
#include <vector>
#include "paddle/fluid/platform/cpu_info.h"
DEFINE_bool(dump_jitcode, false, "Whether to dump the jitcode to file");
......@@ -38,6 +40,35 @@ void GenBase::dumpCode(const unsigned char* code) const {
}
}
std::vector<int> packed_groups(int n, int k, int* block_out, int* rest_out) {
int block;
int max_num_regs;
if (platform::MayIUse(platform::avx512f)) {
block = ZMM_FLOAT_BLOCK;
max_num_regs = 32;
} else {
block = YMM_FLOAT_BLOCK;
max_num_regs = 16;
}
// one for x, one for y, others for z
const int max_used_regs_for_n = max_num_regs - 2;
const int aligned_n = n % block == 0 ? n : (n / block + 1) * block;
const int num_block = aligned_n / block;
const int num_groups = num_block / max_used_regs_for_n;
std::vector<int> groups(num_groups, max_used_regs_for_n);
int rest_num_regs = num_block % max_used_regs_for_n;
if (rest_num_regs != 0) {
groups.push_back(rest_num_regs);
}
if (block_out) {
*block_out = block;
}
if (rest_out) {
*rest_out = n % block;
}
return groups;
}
} // namespace jit
} // namespace operators
} // namespace paddle
......@@ -16,6 +16,7 @@
#include <gflags/gflags.h>
#include <memory> // for unique_ptr
#include <vector>
#include "paddle/fluid/operators/jit/kernel_base.h"
DECLARE_bool(dump_jitcode);
......@@ -67,6 +68,11 @@ class JitCodeCreator : public GenCreator {
virtual std::unique_ptr<GenBase> CreateJitCode(const Attr& attr) const = 0;
};
// unify the method of packed groups
// output the packed groups which used in weights, the block size and rest size
std::vector<int> packed_groups(int n, int k, int* block = nullptr,
int* rest = nullptr);
} // namespace jit
} // namespace operators
} // namespace paddle
......@@ -14,6 +14,8 @@
#include "paddle/fluid/operators/jit/helper.h"
#include <algorithm> // tolower
#include <numeric>
#include <string>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
......@@ -91,6 +93,41 @@ KernelType to_kerneltype(const std::string& act) {
return kNone;
}
template <>
void pack_weights<float>(const float* src, float* dst, int n, int k) {
int block, rest;
const auto groups = packed_groups(n, k, &block, &rest);
std::for_each(groups.begin(), groups.end(), [&](int i) {
PADDLE_ENFORCE_GT(i, 0, "each element of groups should be larger than 0.");
});
int sum = std::accumulate(groups.begin(), groups.end(), 0);
std::memset(dst, 0, k * sum * block * sizeof(float));
PADDLE_ENFORCE_GE(sum * block, n,
"The packed n should be equal to or larger than n");
const int block_len = sizeof(float) * block;
int n_offset = 0;
for (size_t g = 0; g < groups.size(); ++g) {
const float* from = src + n_offset;
for (int j = 0; j < k; ++j) {
size_t copy_sz = groups[g] * block_len;
if (g == groups.size() - 1 && rest != 0) {
copy_sz = (groups[g] - 1) * block_len + rest * sizeof(float);
}
std::memcpy(dst, from + j * n, copy_sz);
dst += groups[g] * block;
}
n_offset += groups[g] * block;
}
}
template <typename T>
typename std::enable_if<!std::is_same<T, float>::value>::type pack_weights(
const T* src, T* dst, int n, int k) {
PADDLE_THROW("Only support pack with float type.");
}
} // namespace jit
} // namespace operators
} // namespace paddle
......@@ -118,26 +118,33 @@ typename KernelTuples::func_type Get(
return GetRefer<KT, KernelTuples>();
}
template <KernelType KT, typename KernelTuples>
class KernelFuncsCache {
template <KernelType KT, typename KernelTuples, typename PlaceType>
class KernelFuncs {
public:
KernelFuncsCache() = default;
static KernelFuncsCache& Instance() {
static thread_local KernelFuncsCache<KT, KernelTuples> g_func_cache;
KernelFuncs() = default;
static KernelFuncs& Cache() {
static thread_local KernelFuncs<KT, KernelTuples, PlaceType> g_func_cache;
return g_func_cache;
}
bool Has(int key) const { return funcs_.find(key) != funcs_.end(); }
typename KernelTuples::func_type At(int key) { return funcs_.at(key); }
void Insert(int key, typename KernelTuples::func_type func) {
funcs_.emplace(key, func);
}
typename KernelTuples::func_type At(int key) {
if (Has(key)) {
return funcs_.at(key);
}
auto func = Get<KT, KernelTuples, PlaceType>(key);
Insert(key, func);
return func;
}
private:
std::unordered_map<int, typename KernelTuples::func_type> funcs_;
DISABLE_COPY_AND_ASSIGN(KernelFuncsCache);
DISABLE_COPY_AND_ASSIGN(KernelFuncs);
};
const char* to_string(KernelType kt);
......@@ -152,17 +159,28 @@ inline std::ostream& operator<<(std::ostream& os, const lstm_attr_t& attr) {
<< (attr.use_peephole ? "True" : "False") << "]";
return os;
}
inline std::ostream& operator<<(std::ostream& os, const gru_attr_t& attr) {
os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
<< "],act_cand[" << to_string(attr.act_cand) << "]";
return os;
}
inline std::ostream& operator<<(std::ostream& os, const seq_pool_attr_t& attr) {
os << "height_size[" << attr.h << "],width_size[" << attr.w << "],pool_type["
<< to_string(attr.type) << "]";
return os;
}
inline std::ostream& operator<<(std::ostream& os, const matmul_attr_t& attr) {
os << "M[" << attr.m << "],N[" << attr.n << "],K[" << attr.k << "]";
return os;
}
// expose the method to pack matmul weight
template <typename T>
void pack_weights(const T* src, T* dst, int n, int k);
} // namespace jit
} // namespace operators
} // namespace paddle
......@@ -145,11 +145,19 @@ struct SeqPoolTuples {
typedef void (*func_type)(const T*, T*, const seq_pool_attr_t*);
};
typedef struct matmul_attr_s {
int m, n, k;
void* packed_weight{nullptr};
matmul_attr_s() = default;
explicit matmul_attr_s(int m_, int n_, int k_, void* packed_weight_ = nullptr)
: m(m_), n(n_), k(k_), packed_weight(packed_weight_) {}
} matmul_attr_t;
template <typename T>
struct MatMulTuples {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, const T*, T*, int, int, int);
typedef matmul_attr_t attr_type;
typedef void (*func_type)(const T*, const T*, T*, const matmul_attr_t*);
};
template <typename T>
......
......@@ -49,6 +49,13 @@ size_t JitCodeKey<seq_pool_attr_t>(const seq_pool_attr_t& attr) {
return (key << pool_type_shift) + static_cast<int>(attr.type);
}
template <>
size_t JitCodeKey<matmul_attr_t>(const matmul_attr_t& attr) {
size_t key = attr.m;
constexpr int shift = 21;
return (key << shift * 2) + ((static_cast<size_t>(attr.n)) << shift) + attr.k;
}
} // namespace jit
} // namespace operators
} // namespace paddle
......@@ -49,49 +49,16 @@ void VTanh(const T* x, T* y, int n) {
}
void Softmax(const T* x, T* y, int n, int bs) {
typename XRNTuples<T>::func_type compute_hmax{nullptr};
typename XRNTuples<T>::func_type compute_hsum{nullptr};
typename AXYNTuples<T>::func_type compute_vscal{nullptr};
typename AXYNTuples<T>::func_type compute_vaddbias{nullptr};
typename XYNTuples<T>::func_type compute_vexp{nullptr};
if (!KernelFuncsCache<kHMax, XRNTuples<T>>::Instance().Has(n)) {
compute_hmax = Get<kHMax, XRNTuples<T>, platform::CPUPlace>(n);
KernelFuncsCache<kHMax, XRNTuples<T>>::Instance().Insert(n, compute_hmax);
} else {
compute_hmax = KernelFuncsCache<kHMax, XRNTuples<T>>::Instance().At(n);
}
if (!KernelFuncsCache<kHSum, XRNTuples<T>>::Instance().Has(n)) {
compute_hsum = Get<kHSum, XRNTuples<T>, platform::CPUPlace>(n);
KernelFuncsCache<kHSum, XRNTuples<T>>::Instance().Insert(n, compute_hsum);
} else {
compute_hsum = KernelFuncsCache<kHSum, XRNTuples<T>>::Instance().At(n);
}
if (!KernelFuncsCache<kVScal, AXYNTuples<T>>::Instance().Has(n)) {
compute_vscal = Get<kVScal, AXYNTuples<T>, platform::CPUPlace>(n);
KernelFuncsCache<kVScal, AXYNTuples<T>>::Instance().Insert(n,
compute_vscal);
} else {
compute_vscal = KernelFuncsCache<kVScal, AXYNTuples<T>>::Instance().At(n);
}
if (!KernelFuncsCache<kVAddBias, AXYNTuples<T>>::Instance().Has(n)) {
compute_vaddbias = Get<kVAddBias, AXYNTuples<T>, platform::CPUPlace>(n);
KernelFuncsCache<kVAddBias, AXYNTuples<T>>::Instance().Insert(
n, compute_vaddbias);
} else {
compute_vaddbias =
KernelFuncsCache<kVAddBias, AXYNTuples<T>>::Instance().At(n);
}
if (!KernelFuncsCache<kVExp, XYNTuples<T>>::Instance().Has(n)) {
compute_vexp = Get<KernelType::kVExp, XYNTuples<T>, platform::CPUPlace>(n);
KernelFuncsCache<kVExp, XYNTuples<T>>::Instance().Insert(n, compute_vexp);
} else {
compute_vexp = KernelFuncsCache<kVExp, XYNTuples<T>>::Instance().At(n);
}
auto compute_hmax =
KernelFuncs<kHMax, XRNTuples<T>, platform::CPUPlace>::Cache().At(n);
auto compute_hsum =
KernelFuncs<kHSum, XRNTuples<T>, platform::CPUPlace>::Cache().At(n);
auto compute_vscal =
KernelFuncs<kVScal, AXYNTuples<T>, platform::CPUPlace>::Cache().At(n);
auto compute_vaddbias =
KernelFuncs<kVAddBias, AXYNTuples<T>, platform::CPUPlace>::Cache().At(n);
auto compute_vexp =
KernelFuncs<kVExp, XYNTuples<T>, platform::CPUPlace>::Cache().At(n);
for (int i = 0; i < bs; ++i) {
T scalar;
......
......@@ -25,17 +25,19 @@ namespace more {
namespace mkl {
template <>
void MatMul<float>(const float* a, const float* b, float* c, int m, int n,
int k) {
platform::dynload::cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m,
n, k, 1.f, a, k, b, n, 0.f, c, n);
void MatMul<float>(const float* a, const float* b, float* c,
const matmul_attr_t* attr) {
platform::dynload::cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
attr->m, attr->n, attr->k, 1.f, a, attr->k, b,
attr->n, 0.f, c, attr->n);
}
template <>
void MatMul<double>(const double* a, const double* b, double* c, int m, int n,
int k) {
platform::dynload::cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m,
n, k, 1.0, a, k, b, n, 0.0, c, n);
void MatMul<double>(const double* a, const double* b, double* c,
const matmul_attr_t* attr) {
platform::dynload::cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
attr->m, attr->n, attr->k, 1.0, a, attr->k, b,
attr->n, 0.0, c, attr->n);
}
template <>
......@@ -127,11 +129,6 @@ void ASum<double>(const double* x, double* res, int n) {
}
// TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512
template <>
bool MatMulKernel<float>::UseMe(const int& d) const {
return platform::MayIUse(platform::avx);
}
template <>
bool VMulKernel<float>::UseMe(const int& d) const {
return platform::MayIUse(platform::avx512f) && d > 512;
......@@ -139,7 +136,7 @@ bool VMulKernel<float>::UseMe(const int& d) const {
template <>
bool VAddKernel<float>::UseMe(const int& d) const {
return platform::MayIUse(platform::avx512f) && d > 512;
return platform::MayIUse(platform::avx) && d > 512;
}
template <>
......@@ -177,6 +174,16 @@ bool SeqPoolKernel<double>::UseMe(const seq_pool_attr_t& attr) const {
return true;
}
template <>
bool MatMulKernel<float>::UseMe(const matmul_attr_t& attr) const {
return platform::MayIUse(platform::avx);
}
template <>
bool MatMulKernel<double>::UseMe(const matmul_attr_t& attr) const {
return true;
}
template <>
bool SoftmaxKernel<float>::UseMe(const int& d) const {
// tuned on avx2
......@@ -189,7 +196,6 @@ bool SoftmaxKernel<float>::UseMe(const int& d) const {
return true; \
}
AWALYS_USE_ME_WITH_DOUBLE(MatMul);
AWALYS_USE_ME_WITH_DOUBLE(VMul);
AWALYS_USE_ME_WITH_DOUBLE(VAdd);
AWALYS_USE_ME_WITH_DOUBLE(VScal);
......
......@@ -26,7 +26,7 @@ namespace more {
namespace mkl {
template <typename T>
void MatMul(const T* a, const T* b, T* c, int m, int n, int k);
void MatMul(const T* a, const T* b, T* c, const matmul_attr_t* attr);
template <typename T>
void VMul(const T* x, const T* y, T* z, int n);
......
......@@ -363,17 +363,19 @@ void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) {
// A(M,K) * B(K,N) = C(M,N)
template <typename T>
void MatMul(const T* A, const T* B, T* C, int M, int N, int K) {
void MatMul(const T* A, const T* B, T* C, const matmul_attr_t* attr) {
int M = attr->m;
int N = attr->n;
int K = attr->k;
for (int m = 0; m < M; ++m) {
const T* pa = A + m * K;
T* pc = C + m * N;
for (int n = 0; n < N; ++n) {
const T* pb = B + n;
T sum = static_cast<T>(0);
for (int k = 0; k < K; ++k) {
sum += (pa[k] * pb[k * N]);
pc[n] = pa[0] * pb[0];
for (int k = 1; k < K; ++k) {
pc[n] += pa[k] * pb[k * N];
}
*(pc + n) = sum;
}
}
}
......
......@@ -22,7 +22,7 @@
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/place.h"
static double acc = 1e-5;
DEFINE_double(acc, 1e-5, "Test accuracy threshold.");
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
......@@ -39,7 +39,7 @@ template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
if (std::is_floating_point<T>::value) {
for (int i = 0; i < n; ++i) {
EXPECT_NEAR(target[i], refer[i], acc);
EXPECT_NEAR(target[i], refer[i], FLAGS_acc);
}
} else {
for (int i = 0; i < n; ++i) {
......@@ -272,21 +272,23 @@ struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>, std::vector<T>,
template <typename T>
struct TestFuncWithRefer<jit::MatMulTuples<T>, std::vector<T>, std::vector<T>,
std::vector<T>, int, int, int> {
std::vector<T>,
typename jit::MatMulTuples<T>::attr_type> {
void operator()(const typename jit::MatMulTuples<T>::func_type tgt,
const std::vector<T>& a, const std::vector<T>& b,
const std::vector<T>& cref, int m, int n, int k) {
const std::vector<T>& cref,
const typename jit::MatMulTuples<T>::attr_type& attr) {
EXPECT_TRUE(tgt != nullptr);
EXPECT_EQ(a.size(), static_cast<size_t>(m * k));
EXPECT_EQ(b.size(), static_cast<size_t>(k * n));
EXPECT_EQ(cref.size(), static_cast<size_t>(m * n));
EXPECT_EQ(a.size(), static_cast<size_t>(attr.m * attr.k));
EXPECT_EQ(b.size(), static_cast<size_t>(attr.k * attr.n));
EXPECT_EQ(cref.size(), static_cast<size_t>(attr.m * attr.n));
std::vector<T> c(cref.size());
const T* a_data = a.data();
const T* b_data = b.data();
const T* cref_data = cref.data();
T* c_data = c.data();
tgt(a_data, b_data, c_data, m, n, k);
ExpectEQ<T>(c_data, cref_data, m * n);
tgt(a_data, b_data, c_data, &attr);
ExpectEQ<T>(c_data, cref_data, attr.m * attr.n);
}
};
......@@ -383,8 +385,8 @@ void TestAXYNKernel() {
template <jit::KernelType KT, typename T, typename PlaceType>
void TestXRNKernel() {
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
auto last_acc = acc;
acc = 1e-4;
auto last_acc = FLAGS_acc;
FLAGS_acc = 1e-4;
for (int d : TestSizes()) {
auto ref = jit::GetRefer<KT, jit::XRNTuples<T>>();
EXPECT_TRUE(ref != nullptr);
......@@ -395,7 +397,7 @@ void TestXRNKernel() {
TestAllImpls<KT, jit::XRNTuples<T>, PlaceType, std::vector<T>, T>(d, x,
ref_res);
}
acc = last_acc;
FLAGS_acc = last_acc;
}
template <jit::KernelType KT, typename T, typename PlaceType>
......@@ -535,9 +537,10 @@ void TestSeqPoolKernel() {
template <jit::KernelType KT, typename T, typename PlaceType>
void TestMatMulKernel() {
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
auto last_acc = acc;
// TODO(intel): this should be acc issue of MKL
acc = 1e-3;
auto last_acc = FLAGS_acc;
// TODO(intel): fix MKL acc issue
// https://github.com/PaddlePaddle/Paddle/issues/15447
FLAGS_acc = 1e-3;
for (int m : {1, 2, 3, 4}) {
for (int n : {1, 2, 3, 4}) {
for (int k : TestSizes()) {
......@@ -549,13 +552,14 @@ void TestMatMulKernel() {
const T* a_data = a.data();
const T* b_data = b.data();
T* c_data = c.data();
ref(a_data, b_data, c_data, m, n, k);
const jit::matmul_attr_t attr{m, n, k};
ref(a_data, b_data, c_data, &attr);
TestAllImpls<KT, jit::MatMulTuples<T>, PlaceType, std::vector<T>,
std::vector<T>, std::vector<T>>(k, a, b, c, m, n, k);
std::vector<T>, std::vector<T>>(attr, a, b, c, attr);
}
}
}
acc = last_acc;
FLAGS_acc = last_acc;
}
template <jit::KernelType KT, typename T, typename PlaceType>
......
......@@ -30,15 +30,17 @@ inline void FCCompute(const BlasT<DeviceContext, T>& blas, const int M,
return;
}
if (relu) {
auto compute =
jit::Get<jit::kVAddRelu, jit::XYZNTuples<T>, platform::CPUPlace>(N);
auto compute = jit::KernelFuncs<jit::kVAddRelu, jit::XYZNTuples<T>,
platform::CPUPlace>::Cache()
.At(N);
for (int i = 0; i < M; i++) {
T* dst = Y + i * N;
compute(B, dst, dst, N);
}
} else {
auto compute =
jit::Get<jit::kVAdd, jit::XYZNTuples<T>, platform::CPUPlace>(N);
auto compute = jit::KernelFuncs<jit::kVAdd, jit::XYZNTuples<T>,
platform::CPUPlace>::Cache()
.At(N);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
......
......@@ -82,8 +82,9 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
const int kClassDim = 1;
// 2D data. Batch x C
auto compute_softmax =
jit::Get<jit::kSoftmax, jit::SoftmaxTuples<float>, platform::CPUPlace>(
in_dims[kClassDim]);
jit::KernelFuncs<jit::kSoftmax, jit::SoftmaxTuples<float>,
platform::CPUPlace>::Cache()
.At(in_dims[kClassDim]);
compute_softmax(in_data, out_data, in_dims[kClassDim], in_dims[kBatchDim]);
}
};
......
......@@ -31,6 +31,8 @@ std::map<std::string,
std::shared_ptr<std::unordered_map<
std::string, std::shared_ptr<ngraph::Node>>>)>>
NgraphBridge::NG_NODE_MAP = {
{"conv2d", NG_OPS::BuildConv2dNode},
{"conv2d_grad", NG_OPS::BuildConv2dGradNode},
{"elementwise_add", NG_OPS::BuildElementwiseAddNode},
{"elementwise_add_grad", NG_OPS::BuildElementwiseAddGradNode},
{"fill_constant", NG_OPS::BuildFillConstantNode},
......@@ -38,6 +40,8 @@ std::map<std::string,
{"mean_grad", NG_OPS::BuildMeanGradNode},
{"mul", NG_OPS::BuildMulNode},
{"mul_grad", NG_OPS::BuildMulGradNode},
{"pool2d", NG_OPS::BuildPool2dNode},
{"pool2d_grad", NG_OPS::BuildPool2dGradNode},
{"softmax", NG_OPS::BuildSoftmaxNode},
{"softmax_grad", NG_OPS::BuildSoftmaxGradNode},
{"scale", NG_OPS::BuildScaleNode},
......
......@@ -22,10 +22,12 @@ limitations under the License. */
#pragma once
#include "ops/binary_unnary_op.h"
#include "ops/conv2d_op.h"
#include "ops/elementwise_add_op.h"
#include "ops/fill_constant_op.h"
#include "ops/mean_op.h"
#include "ops/mul_op.h"
#include "ops/pool2d_op.h"
#include "ops/scale_op.h"
#include "ops/softmax_op.h"
#include "ops/top_k_op.h"
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
std::shared_ptr<ngraph::Node> GroupedConvolution(
const std::shared_ptr<ngraph::Node>& data_batch,
const std::shared_ptr<ngraph::Node>& filters, const ngraph::Strides strides,
const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings,
size_t groups) {
auto& data_shape = data_batch->get_shape();
auto& filter_shape = filters->get_shape();
ngraph::NodeVector ng_slices;
for (size_t i = 0; i < groups; ++i) {
size_t channel_step = filter_shape.at(1);
const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0};
const std::vector<size_t> upper_bound{data_shape.at(0),
(i + 1) * channel_step,
data_shape.at(2), data_shape.at(3)};
auto data_slice = std::make_shared<ngraph::op::Slice>(
data_batch, lower_bound, upper_bound);
size_t filter_step = filter_shape.at(0) / groups;
const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0};
const std::vector<size_t> filter_upper_bound{
(i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2),
filter_shape.at(3)};
auto filter_slice = std::make_shared<ngraph::op::Slice>(
filters, filter_lower_bound, filter_upper_bound);
auto ng_conv = std::make_shared<ngraph::op::Convolution>(
data_slice, filter_slice, strides, dilations, paddings, paddings);
ng_slices.push_back(ng_conv);
}
size_t concat_axis = 1;
return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis);
}
std::shared_ptr<ngraph::Node> GroupedGradConvolutionFilter(
const std::shared_ptr<ngraph::Node>& data_batch,
const std::shared_ptr<ngraph::Node>& filters,
const std::shared_ptr<ngraph::Node>& doutput, const ngraph::Strides strides,
const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings,
size_t groups) {
auto& data_shape = data_batch->get_shape();
auto& filter_shape = filters->get_shape();
auto& out_shape = doutput->get_shape();
ngraph::NodeVector ng_slices;
for (size_t i = 0; i < groups; ++i) {
size_t channel_step = filter_shape.at(1);
const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0};
const std::vector<size_t> upper_bound{data_shape.at(0),
(i + 1) * channel_step,
data_shape.at(2), data_shape.at(3)};
auto data_slice = std::make_shared<ngraph::op::Slice>(
data_batch, lower_bound, upper_bound);
size_t filter_step = data_shape.at(0);
const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0};
const std::vector<size_t> filter_upper_bound{
(i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2),
filter_shape.at(3)};
auto filter_slice = std::make_shared<ngraph::op::Slice>(
filters, filter_lower_bound, filter_upper_bound);
const std::vector<size_t> olower_bound{0, i * filter_step, 0, 0};
const std::vector<size_t> oupper_bound{out_shape.at(0),
(i + 1) * filter_step,
out_shape.at(2), out_shape.at(3)};
auto out_slice = std::make_shared<ngraph::op::Slice>(doutput, olower_bound,
oupper_bound);
auto ng_conv = std::make_shared<ngraph::op::ConvolutionBackpropFilters>(
data_slice, filter_slice->get_shape(), out_slice, strides, dilations,
paddings, paddings, ngraph::Strides{1, 1});
ng_slices.push_back(ng_conv);
}
size_t concat_axis = 0;
return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis);
}
std::shared_ptr<ngraph::Node> GroupedGradConvolutionData(
const std::shared_ptr<ngraph::Node>& data_batch,
const std::shared_ptr<ngraph::Node>& filters,
const std::shared_ptr<ngraph::Node>& doutput, const ngraph::Strides strides,
const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings,
size_t groups) {
auto& data_shape = data_batch->get_shape();
auto& filter_shape = filters->get_shape();
auto& out_shape = doutput->get_shape();
ngraph::NodeVector ng_slices;
for (size_t i = 0; i < groups; ++i) {
size_t channel_step = filter_shape.at(1);
const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0};
const std::vector<size_t> upper_bound{data_shape.at(0),
(i + 1) * channel_step,
data_shape.at(2), data_shape.at(3)};
auto data_slice = std::make_shared<ngraph::op::Slice>(
data_batch, lower_bound, upper_bound);
size_t filter_step = data_shape.at(0);
const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0};
const std::vector<size_t> filter_upper_bound{
(i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2),
filter_shape.at(3)};
auto filter_slice = std::make_shared<ngraph::op::Slice>(
filters, filter_lower_bound, filter_upper_bound);
const std::vector<size_t> olower_bound{0, i * filter_step, 0, 0};
const std::vector<size_t> oupper_bound{out_shape.at(0),
(i + 1) * filter_step,
out_shape.at(2), out_shape.at(3)};
auto out_slice = std::make_shared<ngraph::op::Slice>(doutput, olower_bound,
oupper_bound);
auto ng_conv = std::make_shared<ngraph::op::ConvolutionBackpropData>(
data_slice->get_shape(), filter_slice, out_slice, strides, dilations,
paddings, paddings, ngraph::Strides{1, 1});
ng_slices.push_back(ng_conv);
}
size_t concat_axis = 1;
return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis);
}
void BuildConv2dNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
auto filters = paddle::platform::GetInputNode(op, "Filter", ngb_node_map);
auto input = paddle::platform::GetInputNode(op, "Input", ngb_node_map);
std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides");
std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings");
std::vector<int> dilations = op_attrs.Get<std::vector<int>>("dilations");
const ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)),
static_cast<size_t>(strides.at(1))};
const ngraph::Strides ng_dilations{static_cast<size_t>(dilations.at(0)),
static_cast<size_t>(dilations.at(1))};
const ngraph::CoordinateDiff ng_paddings{
static_cast<std::ptrdiff_t>(paddings.at(0)),
static_cast<std::ptrdiff_t>(paddings.at(1))};
int groups = static_cast<size_t>(op_attrs.Get<int>("groups"));
PADDLE_ENFORCE_GE(groups, 1, "conv groups needs be no less than 1");
std::shared_ptr<ngraph::Node> result;
if (groups == 1) {
result = std::make_shared<ngraph::op::Convolution>(
input, filters, ng_strides, ng_dilations, ng_paddings, ng_paddings);
} else {
result = GroupedConvolution(input, filters, ng_strides, ng_dilations,
ng_paddings, groups);
}
paddle::platform::SetOutputNode(op, "Output", result, ngb_node_map);
}
void BuildConv2dGradNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
auto filter = paddle::platform::GetInputNode(op, "Filter", ngb_node_map);
auto input = paddle::platform::GetInputNode(op, "Input", ngb_node_map);
auto doutput =
paddle::platform::GetInputNode(op, "Output@GRAD", ngb_node_map);
int groups = op_attrs.Get<int>("groups");
std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides");
std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings");
std::vector<int> dilations = op_attrs.Get<std::vector<int>>("dilations");
const ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)),
static_cast<size_t>(strides.at(1))};
const ngraph::Strides ng_dilations{static_cast<size_t>(dilations.at(0)),
static_cast<size_t>(dilations.at(1))};
const ngraph::CoordinateDiff ng_paddings{
static_cast<std::ptrdiff_t>(paddings.at(0)),
static_cast<std::ptrdiff_t>(paddings.at(1))};
std::shared_ptr<ngraph::Node> dfilter;
std::shared_ptr<ngraph::Node> dinput;
if (groups == 1) {
dfilter = std::make_shared<ngraph::op::ConvolutionBackpropFilters>(
input, filter->get_shape(), doutput, ng_strides, ng_dilations,
ng_paddings, ng_paddings, ngraph::Strides{1, 1});
dinput = std::make_shared<ngraph::op::ConvolutionBackpropData>(
input->get_shape(), filter, doutput, ng_strides, ng_dilations,
ng_paddings, ng_paddings, ngraph::Strides{1, 1});
} else {
dfilter = GroupedGradConvolutionFilter(input, filter, doutput, ng_strides,
ng_dilations, ng_paddings, groups);
dinput = GroupedGradConvolutionData(input, filter, doutput, ng_strides,
ng_dilations, ng_paddings, groups);
}
paddle::platform::SetOutputNode(op, "Filter@GRAD", dfilter, ngb_node_map);
paddle::platform::SetOutputNode(op, "Input@GRAD", dinput, ngb_node_map);
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
void BuildPool2dNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto x_shape = x->get_shape();
std::string pooling_type = op_attrs.Get<std::string>("pooling_type");
std::vector<int> ksize = op_attrs.Get<std::vector<int>>("ksize");
std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides");
std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings");
PADDLE_ENFORCE_EQ(x_shape.size() - 2, ksize.size(),
"Handling 2d pooling only");
if (op_attrs.Get<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0;
ksize[i] = static_cast<int>(x_shape.at(i + 2));
}
}
ngraph::Shape ng_padding_below{static_cast<size_t>(paddings.at(0)),
static_cast<size_t>(paddings.at(1))};
ngraph::Shape ng_padding_above{static_cast<size_t>(paddings.at(0)),
static_cast<size_t>(paddings.at(1))};
ngraph::Shape ng_ksize_shape{static_cast<size_t>(ksize.at(0)),
static_cast<size_t>(ksize.at(1))};
ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)),
static_cast<size_t>(strides.at(1))};
auto ComputeCeiledOutput = [](size_t in, size_t k, size_t p, size_t s) {
return (in - k + 2 * p) / s + 1;
};
if (op_attrs.Get<bool>("ceil_mode")) {
auto dummy_out = paddle::platform::GetOutputNode(op, "Out", ngb_node_map);
auto dummpy_shape = dummy_out->get_shape();
for (size_t i = 0; i < ng_padding_above.size(); ++i) {
auto desired_size = ComputeCeiledOutput(x_shape[i + 2], ksize[i],
paddings[i], strides[i]);
if (desired_size != dummpy_shape[i + 2]) {
ng_padding_above[i] += strides[i];
}
}
}
bool padding_exclusive = op_attrs.Get<bool>("exclusive");
if (pooling_type == "max") {
auto pool2d = std::make_shared<ngraph::op::MaxPool>(
x, ng_ksize_shape, ng_strides, ng_padding_below, ng_padding_above);
paddle::platform::SetOutputNode(op, "Out", pool2d, ngb_node_map);
} else if (pooling_type == "avg") {
std::shared_ptr<ngraph::Node> pool2d;
if (op_attrs.Get<bool>("adaptive")) {
auto ComputeAdaptive = [](size_t in, size_t k) {
return std::floor(in / k);
};
ng_strides[0] = x_shape.size() == 4
? ComputeAdaptive(x_shape[3], ksize[0])
: ng_strides[0];
ng_strides[1] = x_shape.size() == 4
? ComputeAdaptive(x_shape[3], ksize[0])
: ng_strides[1];
pool2d =
std::make_shared<ngraph::op::AvgPool>(x, ng_ksize_shape, ng_strides);
} else {
pool2d = std::make_shared<ngraph::op::AvgPool>(
x, ng_ksize_shape, ng_strides, ng_padding_below, ng_padding_above,
!padding_exclusive);
}
paddle::platform::SetOutputNode(op, "Out", pool2d, ngb_node_map);
} else {
PADDLE_THROW("Support max and avg pooling only");
}
}
void BuildPool2dGradNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
auto out = paddle::platform::GetInputNode(op, "Out", ngb_node_map);
auto dout = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto x_shape = x->get_shape();
std::string pooling_type = op_attrs.Get<std::string>("pooling_type");
std::vector<int> ksize = op_attrs.Get<std::vector<int>>("ksize");
std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides");
std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings");
PADDLE_ENFORCE_EQ(x_shape.size() - 2, ksize.size(),
"Handling 2d pooling only");
if (op_attrs.Get<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0;
ksize[i] = static_cast<int>(x_shape.at(i + 2));
}
}
ngraph::Shape ng_padding_below{static_cast<size_t>(paddings.at(0)),
static_cast<size_t>(paddings.at(1))};
ngraph::Shape ng_padding_above{static_cast<size_t>(paddings.at(0)),
static_cast<size_t>(paddings.at(1))};
ngraph::Shape ng_ksize_shape{static_cast<size_t>(ksize.at(0)),
static_cast<size_t>(ksize.at(1))};
ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)),
static_cast<size_t>(strides.at(1))};
bool padding_exclusive = op_attrs.Get<bool>("exclusive");
if (pooling_type == "max") {
auto pool2d_grad = std::make_shared<ngraph::op::MaxPoolBackprop>(
x, dout, out, ng_ksize_shape, ng_strides, ng_padding_below,
ng_padding_above);
paddle::platform::SetOutputNode(op, "X@GRAD", pool2d_grad, ngb_node_map);
} else if (pooling_type == "avg") {
std::shared_ptr<ngraph::Node> pool2d_grad;
if (op_attrs.Get<bool>("adaptive")) {
auto ComputeAdaptive = [](size_t in, size_t k) {
return std::floor(in / k);
};
ng_strides[0] = x_shape.size() == 4
? ComputeAdaptive(x_shape[3], ksize[0])
: ng_strides[0];
ng_strides[1] = x_shape.size() == 4
? ComputeAdaptive(x_shape[3], ksize[0])
: ng_strides[1];
pool2d_grad = std::make_shared<ngraph::op::AvgPoolBackprop>(
x->get_shape(), dout, ng_ksize_shape, ng_strides, ng_padding_below,
ng_padding_above, !padding_exclusive);
} else {
pool2d_grad = std::make_shared<ngraph::op::AvgPoolBackprop>(
x->get_shape(), dout, ng_ksize_shape, ng_strides, ng_padding_below,
ng_padding_above, !padding_exclusive);
}
paddle::platform::SetOutputNode(op, "X@GRAD", pool2d_grad, ngb_node_map);
} else {
PADDLE_THROW("Support max and avg pooling only");
}
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
此差异已折叠。
......@@ -53,10 +53,12 @@ inline static int RoundToPowerOfTwo(int dim) {
__VA_ARGS__; \
} break
#define CUDA_LAUNCH_KERNEL_HELPER(...) \
CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__); \
#define CUDA_LAUNCH_KERNEL_HELPER(...) \
CUDA_LAUNCH_KERNEL_BASE(1024, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(512, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__); \
CUDA_LAUNCH_KERNEL_BASE(32, ##__VA_ARGS__);
template <typename T>
......
......@@ -14,6 +14,12 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h"
DEFINE_bool(benchmark, false,
"Doing memory benchmark. It will make deleting scope synchronized, "
"and add some memory usage logs."
"Default cuda is asynchronous device, set to True will"
"force op run in synchronous mode.");
namespace paddle {
namespace platform {
......
......@@ -37,6 +37,7 @@ limitations under the License. */
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/py_func_op.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
......@@ -127,6 +128,13 @@ PYBIND11_MODULE(core, m) {
m.add_object("_cleanup",
py::capsule([]() { ScopePool::Instance().Clear(); }));
m.def("get_mem_usage", [](int device) {
return memory::allocation::GPUMemMonitor.GetMemUsage(device);
});
m.def("print_mem_usage",
[]() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });
py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
// .def(py::init<>())
.def(py::init<bool>(), py::arg("stop_gradient") = false)
......
此差异已折叠。
......@@ -22,6 +22,8 @@ from . import op_frequence
from .op_frequence import *
from . import quantize
from .quantize import *
from . import int8_inference
from .int8_inference import *
from . import reader
from .reader import *
from . import slim
......@@ -34,6 +36,7 @@ __all__ += decoder.__all__
__all__ += memory_usage_calc.__all__
__all__ += op_frequence.__all__
__all__ += quantize.__all__
__all__ += int8_inference.__all__
__all__ += reader.__all__
__all__ += slim.__all__
__all__ += utils.__all__
# Offline INT8 Calibration Tool
PaddlePaddle supports offline INT8 calibration to accelerate the inference speed. In this document, we provide the instructions on how to enable INT8 calibration and show the ResNet-50 and MobileNet-V1 results in accuracy.
## 0. Prerequisite
You need to install at least PaddlePaddle-1.3 python package `pip install paddlepaddle==1.3`.
## 1. How to generate INT8 model
You can refer to the unit test in [test_calibration.py](../tests/test_calibration.py). Basically, there are three steps:
* Construct calibration object.
```python
calibrator = int8_utility.Calibrator( # Step 1
program=infer_program, # required, FP32 program
pretrained_model=model_path, # required, FP32 pretrained model
algo=algo, # required, calibration algorithm; default is max, the alternative is KL (Kullback–Leibler divergence)
exe=exe, # required, executor
output=int8_model, # required, INT8 model
feed_var_names=feed_dict, # required, feed dict
fetch_list=fetch_targets) # required, fetch targets
```
* Call the calibrator.sample_data() after executor run.
```python
_, acc1, _ = exe.run(
program,
feed={feed_dict[0]: image,
feed_dict[1]: label},
fetch_list=fetch_targets)
calibrator.sample_data() # Step 2
```
* Call the calibrator.save_int8_model() after sampling over specified iterations (e.g., iterations = 50)
```python
calibrator.save_int8_model() # Step 3
```
## 2. How to run INT8 model
You can load INT8 model by load_inference_model [API](https://github.com/PaddlePaddle/Paddle/blob/8b50ad80ff6934512d3959947ac1e71ea3fb9ea3/python/paddle/fluid/io.py#L991) and run INT8 inference similar as [FP32](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/object_detection/eval.py "FP32").
```python
[infer_program, feed_dict,
fetch_targets] = fluid.io.load_inference_model(model_path, exe)
```
## 3. Result
We provide the results of accuracy measurd on [Intel® Xeon® Platinum Gold Processor](https://ark.intel.com/products/120489/Intel-Xeon-Gold-6148-Processor-27-5M-Cache-2-40-GHz- "Intel® Xeon® Gold 6148 Processor") (also known as Intel® Xeon® Skylake6148).
| Model | Dataset | FP32 Accuracy | INT8 Accuracy | Accuracy Diff |
| ------------ | ------------ | ------------ | ------------ | ------------ |
| ResNet-50 | Small | 72.00% | 72.00% | 0.00% |
| MobileNet-V1 | Small | 62.00% | 62.00% | 0.00% |
| ResNet-50 | Full ImageNet Val | 76.63% | 76.17% | 0.46% |
| MobileNet-V1 | Full ImageNet Val | 70.78% | 70.49% | 0.29% |
Please note that [Small](http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz "Small") is a subset of [full ImageNet validation dataset](http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_val.tar "full ImageNet validation dataset").
Notes:
* The accuracy measurement requires the model with `label`.
* The INT8 theoretical speedup is ~1.33X on Intel® Xeon® Skylake Server (please refer to `This allows for 4x more input at the cost of 3x more instructions or 33.33% more compute` in [Reference](https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training "Reference")).
## 4. How to reproduce the results
* Small dataset
```bash
python python/paddle/fluid/contrib/tests/test_calibration.py
```
* Full dataset
```bash
DATASET=full python python/paddle/fluid/contrib/tests/test_calibration.py
```
......@@ -11,3 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from . import utility
from .utility import *
__all__ = utility.__all__
......@@ -11,11 +11,15 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid.core as core
from paddle.fluid import core
import numpy as np
import math
import os
import paddle.fluid as fluid
from paddle.fluid.executor import global_scope
from paddle.fluid import io
__all__ = ['Calibrator']
class Calibrator(object):
......@@ -76,8 +80,7 @@ class Calibrator(object):
'''
for i in self.sampling_program.list_vars():
if i.name in self.sampling_vars:
np_data = np.array(fluid.global_scope().find_var(i.name)
.get_tensor())
np_data = np.array(global_scope().find_var(i.name).get_tensor())
if i.name not in self._sampling_data:
self._sampling_data[i.name] = []
self._sampling_data[i.name].append(np_data)
......@@ -86,9 +89,9 @@ class Calibrator(object):
'''
Save the quantized model to the disk.
'''
fluid.io.save_inference_model(self.output, self.feed_var_names,
self.fetch_list, self.exe,
self.sampling_program)
io.save_inference_model(self.output, self.feed_var_names,
self.fetch_list, self.exe,
self.sampling_program)
def __display_debug(self):
if self.debug:
......
......@@ -24,8 +24,7 @@ import contextlib
from paddle.dataset.common import download
from PIL import Image, ImageEnhance
import math
sys.path.append('..')
import int8_inference.utility as int8_utility
import paddle.fluid.contrib.int8_inference.utility as int8_utility
random.seed(0)
np.random.seed(0)
......
......@@ -21,9 +21,10 @@ import shutil
import six
from functools import reduce
from paddle.fluid import layers
from paddle.fluid.executor import Executor
from paddle.fluid.evaluator import Evaluator
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
from . import core
__all__ = [
......@@ -931,6 +932,17 @@ def save_inference_model(dirname,
if main_program is None:
main_program = default_main_program()
# fix the bug that the activation op's output as target will be pruned.
# will affect the inference performance.
# TODO(Superjomn) add an IR pass to remove 1-scale op.
with program_guard(main_program):
uniq_target_vars = []
for var in target_vars:
if isinstance(var, Variable):
var1 = layers.scale(var, 1.)
uniq_target_vars.append(var1)
target_vars = uniq_target_vars
# when a pserver and a trainer running on the same machine, mkdir may conflict
try:
os.makedirs(dirname)
......
......@@ -49,6 +49,7 @@ __all__ = [
'box_coder',
'polygon_box_transform',
'yolov3_loss',
'box_clip',
'multiclass_nms',
]
......@@ -508,13 +509,10 @@ def yolov3_loss(x,
gtbox,
gtlabel,
anchors,
anchor_mask,
class_num,
ignore_thresh,
loss_weight_xy=None,
loss_weight_wh=None,
loss_weight_conf_target=None,
loss_weight_conf_notarget=None,
loss_weight_class=None,
downsample_ratio,
name=None):
"""
${comment}
......@@ -526,16 +524,13 @@ def yolov3_loss(x,
and x, y, w, h should be relative value of input image.
N is the batch number and B is the max box number in
an image.
gtlabel (Variable): class id of ground truth boxes, shoud be ins shape
gtlabel (Variable): class id of ground truth boxes, shoud be in shape
of [N, B].
anchors (list|tuple): ${anchors_comment}
anchor_mask (list|tuple): ${anchor_mask_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
loss_weight_xy (float|None): ${loss_weight_xy_comment}
loss_weight_wh (float|None): ${loss_weight_wh_comment}
loss_weight_conf_target (float|None): ${loss_weight_conf_target_comment}
loss_weight_conf_notarget (float|None): ${loss_weight_conf_notarget_comment}
loss_weight_class (float|None): ${loss_weight_class_comment}
downsample_ratio (int): ${downsample_ratio_comment}
name (string): the name of yolov3 loss
Returns:
......@@ -555,9 +550,10 @@ def yolov3_loss(x,
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
anchors = [10, 13, 16, 30, 33, 23]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80
anchors=anchors, ignore_thresh=0.5)
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
anchors = [0, 1, 2]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80, anchors=anchors,
ignore_thresh=0.5, downsample_ratio=32)
"""
helper = LayerHelper('yolov3_loss', **locals())
......@@ -569,6 +565,8 @@ def yolov3_loss(x,
raise TypeError("Input gtlabel of yolov3_loss must be Variable")
if not isinstance(anchors, list) and not isinstance(anchors, tuple):
raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
if not isinstance(class_num, int):
raise TypeError("Attr class_num of yolov3_loss must be an integer")
if not isinstance(ignore_thresh, float):
......@@ -581,31 +579,29 @@ def yolov3_loss(x,
loss = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')
attrs = {
"anchors": anchors,
"anchor_mask": anchor_mask,
"class_num": class_num,
"ignore_thresh": ignore_thresh,
"downsample_ratio": downsample_ratio,
}
if loss_weight_xy is not None and isinstance(loss_weight_xy, float):
self.attrs['loss_weight_xy'] = loss_weight_xy
if loss_weight_wh is not None and isinstance(loss_weight_wh, float):
self.attrs['loss_weight_wh'] = loss_weight_wh
if loss_weight_conf_target is not None and isinstance(
loss_weight_conf_target, float):
self.attrs['loss_weight_conf_target'] = loss_weight_conf_target
if loss_weight_conf_notarget is not None and isinstance(
loss_weight_conf_notarget, float):
self.attrs['loss_weight_conf_notarget'] = loss_weight_conf_notarget
if loss_weight_class is not None and isinstance(loss_weight_class, float):
self.attrs['loss_weight_class'] = loss_weight_class
helper.append_op(
type='yolov3_loss',
inputs={"X": x,
"GTBox": gtbox,
"GTLabel": gtlabel},
outputs={'Loss': loss},
inputs={
"X": x,
"GTBox": gtbox,
"GTLabel": gtlabel,
},
outputs={
'Loss': loss,
'ObjectnessMask': objectness_mask,
'GTMatchMask': gt_match_mask
},
attrs=attrs)
return loss
......@@ -2060,6 +2056,54 @@ def generate_proposals(scores,
return rpn_rois, rpn_roi_probs
def box_clip(input, im_info, name=None):
"""
Clip the box into the size given by im_info
For each input box, The formula is given as follows:
.. code-block:: text
xmin = max(min(xmin, im_w - 1), 0)
ymin = max(min(ymin, im_h - 1), 0)
xmax = max(min(xmax, im_w - 1), 0)
ymax = max(min(ymax, im_h - 1), 0)
where im_w and im_h are computed from im_info:
.. code-block:: text
im_h = round(height / scale)
im_w = round(weight / scale)
Args:
input(variable): The input box, the last dimension is 4.
im_info(variable): The information of image with shape [N, 3] with
layout (height, width, scale). height and width
is the input size and scale is the ratio of input
size and original size.
name (str): The name of this layer. It is optional.
Returns:
Variable: The cliped tensor variable.
Examples:
.. code-block:: python
boxes = fluid.layers.data(
name='data', shape=[8, 4], dtype='float32', lod_level=1)
im_info = fluid.layers.data(name='im_info', shape=[3])
out = fluid.layers.box_clip(
input=boxes, im_info=im_info, inplace=True)
"""
helper = LayerHelper("box_clip", **locals())
output = helper.create_variable_for_type_inference(dtype=input.dtype)
inputs = {"Input": input, "ImInfo": im_info}
helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
return output
def multiclass_nms(bboxes,
scores,
score_threshold,
......@@ -2137,9 +2181,11 @@ def multiclass_nms(bboxes,
(After version 1.3, when no boxes detected, the lod is changed
from {0} to {1})
Examples:
.. code-block:: python
boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
dtype='float32', lod_level=1)
scores = fluid.layers.data(name='scores', shape=[81],
......
......@@ -476,12 +476,23 @@ class TestYoloDetection(unittest.TestCase):
x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
gtbox = layers.data(name='gtbox', shape=[10, 4], dtype='float32')
gtlabel = layers.data(name='gtlabel', shape=[10], dtype='int32')
loss = layers.yolov3_loss(x, gtbox, gtlabel, [10, 13, 30, 13], 10,
0.5)
loss = layers.yolov3_loss(x, gtbox, gtlabel, [10, 13, 30, 13],
[0, 1], 10, 0.7, 32)
self.assertIsNotNone(loss)
class TestBoxClip(unittest.TestCase):
def test_box_clip(self):
program = Program()
with program_guard(program):
input_box = layers.data(
name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
im_info = layers.data(name='im_info', shape=[3], dtype='float32')
out = layers.box_clip(input_box, im_info)
self.assertIsNotNone(out)
class TestMulticlassNMS(unittest.TestCase):
def test_multiclass_nms(self):
program = Program()
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from paddle.fluid.tests.unittests.test_conv2d_op import *
class TestNGRAPH(TestConv2dOp):
def init_kernel_type(self):
super(TestNGRAPH, self).init_kernel_type()
class TestNGRAPHWithPad(TestWithPad):
def init_kernel_type(self):
super(TestNGRAPHWithPad, self).init_kernel_type()
class TestNGRAPHWithStride(TestWithStride):
def init_kernel_type(self):
super(TestNGRAPHWithStride, self).init_kernel_type()
class TestNGRAPHWithGroup(TestWithGroup):
def init_kernel_type(self):
super(TestNGRAPHWithGroup, self).init_kernel_type()
class TestNGRAPHWith1x1(TestWith1x1):
def init_kernel_type(self):
super(TestNGRAPHWith1x1, self).init_kernel_type()
class TestNGRAPHWithInput1x1Filter1x1(TestWithInput1x1Filter1x1):
def init_kernel_type(self):
super(TestNGRAPHWithInput1x1Filter1x1, self).init_kernel_type()
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from paddle.fluid.tests.unittests.test_pool2d_op import *
class TestNGRAPHPool2D_Op(TestPool2D_Op):
def init_test_case(self):
super(TestNGRAPHPool2D_Op, self).init_test_case()
class TestNGRAPHCase1(TestCase1):
def init_test_case(self):
super(TestNGRAPHCase1, self).init_test_case()
class TestNGRAPHCase2(TestCase2):
def init_test_case(self):
super(TestNGRAPHCase2, self).init_test_case()
class TestNGRAPHCase3(TestCase3):
def init_pool_type(self):
super(TestNGRAPHCase3, self).init_pool_type()
class TestNGRAPHCase4(TestCase4):
def init_pool_type(self):
super(TestNGRAPHCase4, self).init_pool_type()
class TestNGRAPHCase5(TestCase5):
def init_pool_type(self):
super(TestNGRAPHCase5, self).init_pool_type()
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
import math
from op_test import OpTest
import copy
def box_clip(input_box, im_info, output_box):
im_w = round(im_info[1] / im_info[2])
im_h = round(im_info[0] / im_info[2])
output_box[:, :, 0] = np.maximum(
np.minimum(input_box[:, :, 0], im_w - 1), 0)
output_box[:, :, 1] = np.maximum(
np.minimum(input_box[:, :, 1], im_h - 1), 0)
output_box[:, :, 2] = np.maximum(
np.minimum(input_box[:, :, 2], im_w - 1), 0)
output_box[:, :, 3] = np.maximum(
np.minimum(input_box[:, :, 3], im_h - 1), 0)
def batch_box_clip(input_boxes, im_info, lod):
n = input_boxes.shape[0]
m = input_boxes.shape[1]
output_boxes = np.zeros((n, m, 4), dtype=np.float32)
cur_offset = 0
for i in range(len(lod)):
box_clip(input_boxes[cur_offset:(cur_offset + lod[i]), :, :],
im_info[i, :],
output_boxes[cur_offset:(cur_offset + lod[i]), :, :])
cur_offset += lod[i]
return output_boxes
class TestBoxClipOp(OpTest):
def test_check_output(self):
self.check_output()
def setUp(self):
self.op_type = "box_clip"
lod = [[1, 2, 3]]
input_boxes = np.random.random((6, 10, 4)) * 5
im_info = np.array([[5, 8, 1.], [6, 6, 1.], [7, 5, 1.]])
output_boxes = batch_box_clip(input_boxes, im_info, lod[0])
self.inputs = {
'Input': (input_boxes.astype('float32'), lod),
'ImInfo': im_info.astype('float32'),
}
self.outputs = {'Output': output_boxes}
if __name__ == '__main__':
unittest.main()
......@@ -268,9 +268,6 @@ class TestImperativePtbRnn(unittest.TestCase):
sgd.minimize(dy_loss)
for param in ptb_model.parameters():
dy_param_updated[param.name] = param._numpy()
# print("dy_loss is {}".format(dy_loss._numpy()))
# print("last_hidden is {}".format(last_hidden._numpy()))
# print("last_cell is {}".format(last_cell._numpy()))
with new_program_scope():
fluid.default_startup_program().random_seed = seed
......
......@@ -82,7 +82,8 @@ class TestBook(unittest.TestCase):
self.assertEqual(feed_var_names, ["x", "y"])
self.assertEqual(len(fetch_vars), 1)
self.assertEqual(str(fetch_vars[0]), str(avg_cost))
print("fetch %s" % str(fetch_vars[0]))
self.assertTrue("scale" in str(fetch_vars[0]))
self.assertEqual(expected, actual)
......
......@@ -17,3 +17,4 @@ from __future__ import print_function
from .program_utils import *
from .ufind import *
from .checkport import *
from .vars_distributed import *
......@@ -109,6 +109,7 @@ packages=['paddle',
'paddle.fluid.contrib',
'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize',
'paddle.fluid.contrib.int8_inference',
'paddle.fluid.contrib.reader',
'paddle.fluid.contrib.slim',
'paddle.fluid.contrib.slim.core',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册