Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3ff5cc2d
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3ff5cc2d
编写于
11月 20, 2019
作者:
Z
zhaoyuchen2018
提交者:
GitHub
11月 20, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix topk compile failed on windows (#21243)
* Fix topk compile failed on windows * Use explicit cast for assign data
上级
2e2f92a5
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
18 addition
and
15 deletion
+18
-15
paddle/fluid/operators/top_k_op.cu
paddle/fluid/operators/top_k_op.cu
+18
-15
未找到文件。
paddle/fluid/operators/top_k_op.cu
浏览文件 @
3ff5cc2d
...
@@ -336,12 +336,13 @@ struct ColumnIndexIter {
...
@@ -336,12 +336,13 @@ struct ColumnIndexIter {
int
num_cols_
;
int
num_cols_
;
};
};
__global__
void
InitIndex
(
int64_t
*
indices
,
int
num_rows
,
int
num_cols
)
{
__global__
void
InitIndex
(
int64_t
*
indices
,
int64_t
num_rows
,
int64_t
num_cols
)
{
int
col_id
=
threadIdx
.
x
;
int
col_id
=
threadIdx
.
x
;
int
row_id
=
blockIdx
.
x
;
int
row_id
=
blockIdx
.
x
;
for
(
int
j
=
row_id
;
j
<
num_rows
;
j
+=
gridDim
.
x
)
{
for
(
int
64_t
j
=
row_id
;
j
<
num_rows
;
j
+=
gridDim
.
x
)
{
for
(
int
i
=
col_id
;
i
<
num_cols
;
i
+=
blockDim
.
x
)
{
for
(
int
64_t
i
=
col_id
;
i
<
num_cols
;
i
+=
blockDim
.
x
)
{
indices
[
j
*
num_cols
+
i
]
=
i
;
indices
[
j
*
num_cols
+
i
]
=
i
;
}
}
}
}
...
@@ -349,14 +350,14 @@ __global__ void InitIndex(int64_t* indices, int num_rows, int num_cols) {
...
@@ -349,14 +350,14 @@ __global__ void InitIndex(int64_t* indices, int num_rows, int num_cols) {
template
<
typename
T
>
template
<
typename
T
>
bool
SortTopk
(
const
platform
::
CUDADeviceContext
&
ctx
,
bool
SortTopk
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
*
input_tensor
,
const
size_t
num_cols
,
const
framework
::
Tensor
*
input_tensor
,
const
int64_t
num_cols
,
const
size_t
num_rows
,
size_t
k
,
framework
::
Tensor
*
out_tensor
,
const
int64_t
num_rows
,
const
int
k
,
framework
::
Tensor
*
out_tensor
,
framework
::
Tensor
*
indices_tensor
)
{
framework
::
Tensor
*
indices_tensor
)
{
auto
cu_stream
=
ctx
.
stream
();
auto
cu_stream
=
ctx
.
stream
();
Tensor
input_indices
;
Tensor
input_indices
;
const
std
::
vector
<
int64_t
>
dims
=
{
static_cast
<
int64_t
>
(
num_rows
),
const
std
::
vector
<
int64_t
>
dims
=
{
num_rows
,
num_cols
};
static_cast
<
int64_t
>
(
num_cols
)};
auto
dim
=
framework
::
make_ddim
(
dims
);
auto
dim
=
framework
::
make_ddim
(
dims
);
input_indices
.
Resize
(
dim
);
input_indices
.
Resize
(
dim
);
// input_indices.Resize(num_rows*num_cols);
// input_indices.Resize(num_rows*num_cols);
...
@@ -378,18 +379,20 @@ bool SortTopk(const platform::CUDADeviceContext& ctx,
...
@@ -378,18 +379,20 @@ bool SortTopk(const platform::CUDADeviceContext& ctx,
int
block_size
=
ComputeBlockSize
(
num_cols
);
int
block_size
=
ComputeBlockSize
(
num_cols
);
int
maxGridDimX
=
ctx
.
GetCUDAMaxGridDimSize
().
x
;
unsigned
int
maxGridDimX
=
ctx
.
GetCUDAMaxGridDimSize
().
x
;
// actually, int num_rows < max_grid_size
// actually, int num_rows < max_grid_size
int
grid_size
=
num_rows
<
maxGridDimX
?
num_rows
:
maxGridDimX
;
unsigned
int
grid_size
=
num_rows
<
maxGridDimX
?
static_cast
<
unsigned
int
>
(
num_rows
)
:
maxGridDimX
;
// Init a index array
// Init a index array
InitIndex
<<<
grid_size
,
block_size
,
0
,
cu_stream
>>>
(
InitIndex
<<<
grid_size
,
block_size
,
0
,
cu_stream
>>>
(
input_indices
.
data
<
int64_t
>
(),
num_rows
,
num_cols
);
input_indices
.
data
<
int64_t
>
(),
num_rows
,
num_cols
);
// create iter for counting input
// create iter for counting input
cub
::
CountingInputIterator
<
int
>
counting_iter
(
0
);
cub
::
CountingInputIterator
<
int
64_t
>
counting_iter
(
0
);
// segment_offset is used for move to next row
// segment_offset is used for move to next row
cub
::
TransformInputIterator
<
int
,
SegmentOffsetIter
,
cub
::
TransformInputIterator
<
int
64_t
,
SegmentOffsetIter
,
cub
::
CountingInputIterator
<
int
>>
cub
::
CountingInputIterator
<
int
64_t
>>
segment_offsets_t
(
counting_iter
,
SegmentOffsetIter
(
num_cols
));
segment_offsets_t
(
counting_iter
,
SegmentOffsetIter
(
num_cols
));
T
*
sorted_values_ptr
;
T
*
sorted_values_ptr
;
...
@@ -484,7 +487,7 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -484,7 +487,7 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
indices
=
ctx
.
Output
<
Tensor
>
(
"Indices"
);
auto
*
indices
=
ctx
.
Output
<
Tensor
>
(
"Indices"
);
size_
t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
in
t
k
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"k"
));
auto
*
k_t
=
ctx
.
Input
<
Tensor
>
(
"K"
);
auto
*
k_t
=
ctx
.
Input
<
Tensor
>
(
"K"
);
if
(
k_t
)
{
if
(
k_t
)
{
...
@@ -502,9 +505,9 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
...
@@ -502,9 +505,9 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
// FIXME(typhoonzero): data is always converted to type T?
// FIXME(typhoonzero): data is always converted to type T?
framework
::
DDim
inputdims
=
input
->
dims
();
framework
::
DDim
inputdims
=
input
->
dims
();
const
size
_t
input_height
=
framework
::
product
(
const
int64
_t
input_height
=
framework
::
product
(
framework
::
slice_ddim
(
inputdims
,
0
,
inputdims
.
size
()
-
1
));
framework
::
slice_ddim
(
inputdims
,
0
,
inputdims
.
size
()
-
1
));
const
size
_t
input_width
=
inputdims
[
inputdims
.
size
()
-
1
];
const
int64
_t
input_width
=
inputdims
[
inputdims
.
size
()
-
1
];
const
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
const
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
if
((
input_width
<=
1024
||
k
>=
128
||
k
==
input_width
))
{
if
((
input_width
<=
1024
||
k
>=
128
||
k
==
input_width
))
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录