Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3f6fc10b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3f6fc10b
编写于
4月 10, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
new op that init table value randomly
上级
31464f34
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
210 addition
and
0 deletion
+210
-0
paddle/fluid/operators/uniform_random_table_op.cc
paddle/fluid/operators/uniform_random_table_op.cc
+144
-0
python/paddle/fluid/tests/unittests/test_uniform_random_table_op.py
...dle/fluid/tests/unittests/test_uniform_random_table_op.py
+66
-0
未找到文件。
paddle/fluid/operators/uniform_random_table_op.cc
0 → 100644
浏览文件 @
3f6fc10b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
class
UniformRandomTableInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
VLOG
(
3
)
<<
"Infershape..."
;
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of UniformRandomTableOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
Attrs
().
Get
<
float
>
(
"min"
)
<
ctx
->
Attrs
().
Get
<
float
>
(
"max"
),
"uniform_random's min must less then max"
);
auto
&
shape
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"shape"
);
std
::
vector
<
int64_t
>
temp
;
temp
.
reserve
(
shape
.
size
());
for
(
auto
dim
:
shape
)
{
temp
.
push_back
(
static_cast
<
int64_t
>
(
dim
));
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
temp
));
}
};
class
UniformRandomTableOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
VLOG
(
3
)
<<
"RunImpl..."
;
auto
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
SelectedRows
>
();
auto
shard_cnt
=
Attr
<
int
>
(
"shard_cnt"
);
auto
shard_id
=
Attr
<
int
>
(
"shard_id"
);
auto
max_id
=
Attr
<
int
>
(
"max_id"
);
auto
shape
=
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
auto
tensor
=
out
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
shape
));
// Only allocate the memory of large table on CPU
auto
cpu
=
platform
::
CPUPlace
();
float
*
data
=
tensor
->
mutable_data
<
float
>
(
cpu
);
VLOG
(
3
)
<<
"generate seed"
;
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
Attr
<
int
>
(
"seed"
));
std
::
minstd_rand
engine
;
if
(
seed
==
0
)
{
seed
=
std
::
random_device
()();
}
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
float
>
dist
(
Attr
<
float
>
(
"min"
),
Attr
<
float
>
(
"max"
));
int64_t
size
=
tensor
->
numel
();
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
dist
(
engine
);
}
// initialize rows by round-robin
// TODO(Yancey1989): need to support other way to distribute Ids
VLOG
(
3
)
<<
"calculate rows_size..."
;
int64_t
rows_size
=
0
;
if
(
max_id
%
shard_cnt
==
0
)
{
rows_size
=
max_id
/
shard_cnt
;
}
else
{
rows_size
=
max_id
/
shard_cnt
+
1
;
}
auto
*
rows
=
out
->
mutable_rows
();
rows
->
resize
(
rows_size
);
(
*
rows
)[
0
]
=
shard_id
;
for
(
int64_t
idx
=
1
;
idx
<
rows_size
;
++
idx
)
{
(
*
rows
)[
idx
]
=
(
*
rows
)[
idx
-
1
]
+
shard_cnt
;
}
out
->
set_height
(
max_id
);
}
};
class
UniformRandomTableOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
UniformRandomTableOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddOutput
(
"Out"
,
"(SelectedRows)"
"The output table of uniform random table op."
);
AddComment
(
R"DOC(
Uniform random operator for initializing a table.
This operator initializes a SelectedRows with random values sampled from a
uniform distribution.
)DOC"
);
AddAttr
<
int
>
(
"max_id"
,
"(int, required)"
"The maximal Id for the table."
);
AddAttr
<
int
>
(
"shard_cnt"
,
"(int, required)"
"The count of shards for distributing the table."
);
AddAttr
<
int
>
(
"shard_id"
,
"(int, required) The current shard ID."
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) The shape of the output tensor"
);
AddAttr
<
float
>
(
"min"
,
"(float, default -1.0) "
"Minimum value of uniform random"
)
.
SetDefault
(
-
1.0
f
);
AddAttr
<
float
>
(
"max"
,
"(float, default 1.0) "
"Maximun value of uniform random"
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
"Random seed used for generating samples. "
"0 means use a seed generated by the system."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time."
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"dtype"
,
"(int, default 5(FP32)) Output tensor data type"
)
.
SetDefault
(
framework
::
proto
::
VarType
::
FP32
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
uniform_random_table
,
ops
::
UniformRandomTableOp
,
ops
::
UniformRandomTableInferShape
,
ops
::
UniformRandomTableOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
python/paddle/fluid/tests/unittests/test_uniform_random_table_op.py
0 → 100644
浏览文件 @
3f6fc10b
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
def
output_hist
(
out
):
hist
,
_
=
np
.
histogram
(
out
,
range
=
(
-
5
,
10
))
hist
=
hist
.
astype
(
"float32"
)
hist
/=
float
(
out
.
size
)
prob
=
0.1
*
np
.
ones
((
10
))
return
hist
,
prob
class
TestUniformRandomTableOp
(
unittest
.
TestCase
):
def
get_places
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
return
places
def
test_check_output
(
self
):
for
place
in
self
.
get_places
():
self
.
check_with_place
(
place
)
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
out
=
scope
.
var
(
"X"
).
get_selected_rows
()
op
=
Operator
(
"uniform_random_table"
,
Out
=
"X"
,
shape
=
[
4
,
784
],
min
=-
5.0
,
max
=
10.0
,
seed
=
10
,
shard_cnt
=
3
,
shard_id
=
1
,
max_id
=
10
)
op
.
run
(
scope
,
place
)
self
.
assertEqual
(
out
.
rows
(),
[
1
,
4
,
7
,
10
])
self
.
assertEqual
(
out
.
height
(),
10
)
self
.
assertEqual
(
out
.
get_tensor
().
shape
(),
[
4
,
784
])
hist
,
prob
=
output_hist
(
np
.
array
(
out
.
get_tensor
()))
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录