Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3d939d32
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3d939d32
编写于
3月 30, 2019
作者:
K
Kaipeng Deng
提交者:
GitHub
3月 30, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16023 from heavengate/kl_div_loss
KL div loss: add kldiv_loss op
上级
54474637
e56fd438
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
437 addition
and
0 deletion
+437
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/kldiv_loss_op.cc
paddle/fluid/operators/kldiv_loss_op.cc
+171
-0
paddle/fluid/operators/kldiv_loss_op.cu
paddle/fluid/operators/kldiv_loss_op.cu
+22
-0
paddle/fluid/operators/kldiv_loss_op.h
paddle/fluid/operators/kldiv_loss_op.h
+119
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+33
-0
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
+82
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+9
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
3d939d32
...
...
@@ -230,6 +230,7 @@ paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func',
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1546136806fef5c08f6918544bd9151d'))
paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', '2f6ff96864054a31aa4bb659c6722c99'))
paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '431a4301c35032166ec029f7432c80a7'))
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '776d536cac47c89073abc7ee524d5aec'))
paddle.fluid.layers.tree_conv (ArgSpec(args=['nodes_vector', 'edge_set', 'output_size', 'num_filters', 'max_depth', 'act', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1, 2, 'tanh', None, None, None)), ('document', '34ea12ac9f10a65dccbc50100d12e607'))
paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '46994d10276dd4cb803b4062b5d14329'))
paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', 'b76ccca3735bea4a58a0dbf0d77c5393'))
...
...
paddle/fluid/operators/kldiv_loss_op.cc
0 → 100644
浏览文件 @
3d939d32
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/kldiv_loss_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
KLDivLossOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of KLDivLossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Target"
),
"Input(Target) of KLDivLossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Loss"
),
"Output(Loss) of KLDivLossOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_target
=
ctx
->
GetInputDim
(
"Target"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
dim_target
.
size
(),
"Input(X) rank and Input(Target) rank should be same."
);
for
(
int
i
=
0
;
i
<
dim_x
.
size
();
i
++
)
{
PADDLE_ENFORCE_EQ
(
dim_x
[
i
],
dim_target
[
i
],
"Input(X) and Input(Target) should in same shape."
);
}
auto
reduction
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"reduction"
);
PADDLE_ENFORCE
(
"mean"
==
reduction
||
"sum"
==
reduction
||
"batchmean"
==
reduction
||
"none"
==
reduction
,
"Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."
);
if
(
"none"
==
reduction
)
{
ctx
->
SetOutputDim
(
"Loss"
,
dim_x
);
}
else
{
ctx
->
SetOutputDim
(
"Loss"
,
{
1
});
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
};
class
KLDivLossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of KL divergence loss operator. "
"This is a tensor with shape of [N, *], where N is the "
"batch size, * means any number of additional dimensions."
);
AddInput
(
"Target"
,
"The tensor of KL divergence loss operator. "
"This is a tensor with shape of Input(X)."
);
AddOutput
(
"Loss"
,
"The output KL divergence loss tensor. if Attr(reduction) is "
"'none', this tensor should be in same shape of of Input(X), else "
"this tensor should be in shape of [1]."
);
AddAttr
<
std
::
string
>
(
"reduction"
,
"The reduction type to apply to the output, available types "
"are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
"reduction, 'batchmean' for the sum of output divided by "
"batch size, 'mean' for the average value of all output, "
"'sum' for the sum of the output."
)
.
SetDefault
(
"mean"
);
AddComment
(
R"DOC(
This operator calculates the Kullback-Leibler divergence loss
between Input(X) and Input(Target).
KL divergence loss is calculated as follows:
$$l(x, y) = y * (\log(y) - x)$$
While :math:`x` is Input(X) and :math:`y` is Input(Target).
While :attr:`reduction` is :attr:`none`, output loss is in
the same shape as Input(X), loss in each point is calculated
seperately and no reduction is applied.
While :attr:`reduction` is :attr:`mean`, output loss is in
shape of [1] and loss value is the mean value of all losses.
While :attr:`reduction` is :attr:`sum`, output loss is in
shape of [1] and loss value is the sum value of all losses.
While :attr:`reduction` is :attr:`batchmean`, output loss is
in shape of [1] and loss value is the sum value of all losses
divided by batch size.
)DOC"
);
}
};
class
KLDivLossOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Target"
),
"Input(Target) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Loss"
)),
"Input(Loss@GRAD) should not be null"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dim_x
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
};
class
KLDivLossOpGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"kldiv_loss_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"Target"
,
Input
(
"Target"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
kldiv_loss
,
ops
::
KLDivLossOp
,
ops
::
KLDivLossOpMaker
,
ops
::
KLDivLossOpGradMaker
);
REGISTER_OPERATOR
(
kldiv_loss_grad
,
ops
::
KLDivLossOpGrad
);
REGISTER_OP_CPU_KERNEL
(
kldiv_loss
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
kldiv_loss_grad
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/kldiv_loss_op.cu
0 → 100644
浏览文件 @
3d939d32
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/kldiv_loss_op.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
kldiv_loss
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
kldiv_loss_grad
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/kldiv_loss_op.h
0 → 100644
浏览文件 @
3d939d32
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
using
Array1
=
Eigen
::
DSizes
<
int64_t
,
1
>
;
template
<
typename
T
>
struct
KLDivLossForward
{
HOSTDEVICE
KLDivLossForward
()
{}
HOSTDEVICE
T
operator
()(
const
T
&
target
,
const
T
&
input
)
const
{
if
(
target
<=
0
)
{
return
0
;
}
else
{
return
target
*
(
std
::
log
(
target
)
-
input
);
}
}
};
template
<
typename
T
>
struct
KLDivLossBackward
{
HOSTDEVICE
KLDivLossBackward
()
{}
HOSTDEVICE
T
operator
()(
const
T
&
target
,
const
T
&
grad
)
const
{
if
(
target
<=
0
)
{
return
0
;
}
else
{
return
static_cast
<
T
>
(
-
1.
)
*
grad
;
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
KLDivLossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
target
=
ctx
.
Input
<
Tensor
>
(
"Target"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
const
int
n
=
input
->
dims
()[
0
];
loss
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
input_t
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
target_t
=
EigenVector
<
T
>::
Flatten
(
*
target
);
auto
loss_t
=
EigenVector
<
T
>::
Flatten
(
*
loss
);
auto
output
=
target_t
.
binaryExpr
(
input_t
,
KLDivLossForward
<
T
>
());
if
(
"none"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
;
}
else
if
(
"batchmean"
==
reduction
)
{
auto
output_sum
=
output
.
sum
().
eval
();
loss_t
.
device
(
place
)
=
output_sum
/
output_sum
.
constant
(
n
);
}
else
if
(
"mean"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
.
mean
();
}
else
if
(
"sum"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
.
sum
();
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
KLDivLossGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
target
=
ctx
.
Input
<
Tensor
>
(
"Target"
);
auto
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
int
n
=
input_grad
->
dims
()[
0
];
const
int
numel
=
input_grad
->
numel
();
const
int
expand
=
numel
/
loss_grad
->
numel
();
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
target_t
=
EigenVector
<
T
>::
Flatten
(
*
target
);
auto
input_grad_t
=
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
auto
loss_grad_t
=
EigenVector
<
T
>::
Flatten
(
*
loss_grad
);
auto
loss_grad_expand
=
loss_grad_t
.
broadcast
(
Array1
(
expand
));
auto
grad_t
=
target_t
*
loss_grad_expand
;
input_grad_t
.
device
(
place
)
=
target_t
.
binaryExpr
(
grad_t
,
KLDivLossBackward
<
T
>
());
if
(
"mean"
==
reduction
)
{
input_grad_t
.
device
(
place
)
=
input_grad_t
/
static_cast
<
T
>
(
numel
);
}
else
if
(
"batchmean"
==
reduction
)
{
input_grad_t
.
device
(
place
)
=
input_grad_t
/
static_cast
<
T
>
(
n
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
3d939d32
...
...
@@ -188,6 +188,7 @@ __all__ = [
'psroi_pool'
,
'teacher_student_sigmoid_loss'
,
'huber_loss'
,
'kldiv_loss'
,
'tree_conv'
,
'npair_loss'
,
'fsp_matrix'
,
...
...
@@ -10762,6 +10763,38 @@ def huber_loss(input, label, delta):
return
out
@
templatedoc
()
def
kldiv_loss
(
x
,
target
,
reduction
=
'mean'
,
name
=
None
):
"""
${comment}
Args:
x (Variable): ${x_comment}
target (Variable): ${target_comment}
reduction (Variable): ${reduction_comment}
name (str, default None): The name of this layer.
Returns:
kldiv\_loss (Variable): The KL divergence loss.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
"""
helper
=
LayerHelper
(
'kldiv_loss'
,
**
locals
())
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'kldiv_loss'
,
inputs
=
{
'X'
:
x
,
'Target'
:
target
},
outputs
=
{
'Loss'
:
loss
},
attrs
=
{
'reduction'
:
reduction
})
return
loss
@
templatedoc
()
def
tree_conv
(
nodes_vector
,
edge_set
,
...
...
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
0 → 100644
浏览文件 @
3d939d32
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
kldiv_loss
(
x
,
target
,
reduction
):
output
=
target
*
(
np
.
log
(
target
)
-
x
)
loss
=
np
.
where
(
target
>=
0
,
output
,
np
.
zeros_like
(
x
))
if
reduction
==
"batchmean"
:
return
loss
.
sum
()
/
x
.
shape
[
0
]
if
reduction
==
"mean"
:
return
loss
.
mean
()
if
reduction
==
"sum"
:
return
loss
.
sum
()
return
loss
class
TestKLDivLossOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
'kldiv_loss'
x
=
np
.
random
.
uniform
(
-
10
,
10
,
self
.
x_shape
).
astype
(
'float32'
)
target
=
np
.
random
.
uniform
(
-
10
,
10
,
self
.
x_shape
).
astype
(
'float32'
)
self
.
attrs
=
{
"reduction"
:
self
.
reduction
}
self
.
inputs
=
{
'X'
:
x
,
'Target'
:
target
,
}
loss
=
kldiv_loss
(
x
,
target
,
self
.
reduction
)
self
.
outputs
=
{
'Loss'
:
loss
.
astype
(
'float32'
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"Target"
]),
max_relative_error
=
0.06
)
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
5
,
5
)
self
.
reduction
=
'batchmean'
class
TestKLDivLossOp2
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
3
,
2
,
7
,
7
)
self
.
reduction
=
'none'
class
TestKLDivLossOp3
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
7
,
9
)
self
.
reduction
=
'mean'
class
TestKLDivLossOp4
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
5
,
7
)
self
.
reduction
=
'sum'
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
3d939d32
...
...
@@ -1591,6 +1591,15 @@ class TestBook(unittest.TestCase):
out
=
layers
.
spectral_norm
(
weight
,
dim
=
1
,
power_iters
=
1
)
self
.
assertIsNotNone
(
out
)
def
test_kldiv_loss
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
32
,
128
,
128
],
dtype
=
"float32"
)
target
=
layers
.
data
(
name
=
'target'
,
shape
=
[
32
,
128
,
128
],
dtype
=
"float32"
)
loss
=
layers
.
kldiv_loss
(
x
=
x
,
target
=
target
,
reduction
=
'batchmean'
)
self
.
assertIsNotNone
(
loss
)
print
(
str
(
program
))
def
test_temporal_shift
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录