提交 3c249283 编写于 作者: T tensor-tang

init seqconv eltadd relu op

上级 305034f5
...@@ -86,7 +86,7 @@ function(op_library TARGET) ...@@ -86,7 +86,7 @@ function(op_library TARGET)
# remove windows unsupported op, because windows has no nccl, no warpctc such ops. # remove windows unsupported op, because windows has no nccl, no warpctc such ops.
foreach(windows_unsupport_op "nccl_op" "gen_nccl_id_op" "warpctc_op" "hierarchical_sigmoid_op" foreach(windows_unsupport_op "nccl_op" "gen_nccl_id_op" "warpctc_op" "hierarchical_sigmoid_op"
"crf_decoding_op" "select_op" "lstmp_op" "gru_op" "fusion_gru_op" "lstm_op" "fusion_lstm_op" "cumsum_op" "crf_decoding_op" "select_op" "lstmp_op" "gru_op" "fusion_gru_op" "lstm_op" "fusion_lstm_op" "cumsum_op"
"channel_send_op" "channel_create_op" "channel_close_op" "channel_recv_op") "fusion_seqconv_eltadd_relu_op" "channel_send_op" "channel_create_op" "channel_close_op" "channel_recv_op")
if ("${TARGET}" STREQUAL "${windows_unsupport_op}") if ("${TARGET}" STREQUAL "${windows_unsupport_op}")
return() return()
endif() endif()
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fusion_seqconv_eltadd_relu_op.h"
#include <algorithm> // for min, max
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc_compute.h"
namespace paddle {
namespace operators {
void FusionSeqConvEltAddReluOp::InferShape(
framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of FusionSeqConvEltAddReluOp should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("Filter"),
"Input(Filter) of FusionSeqConvEltAddReluOp should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("Bias"),
"Input(Bias) of FusionSeqConvEltAddReluOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("Out"),
"Output(Out) of FusionSeqConvEltAddReluOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("ColMat"),
"Output(ColMat) of FusionSeqConvEltAddReluOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto w_dims = ctx->GetInputDim("Filter");
PADDLE_ENFORCE(
ctx->Attrs().Get<int>("contextStride") == 1,
"Currently, FusionSeqConvEltAddReluOp only supports contextStride=1.");
PADDLE_ENFORCE(x_dims.size() == 2 && w_dims.size() == 2,
"Input(X, Filter) should be 2-D tensor.");
PADDLE_ENFORCE(x_dims.size() == 2 && w_dims.size() == 2,
"Input(X, Filter) should be 2-D tensor.");
PADDLE_ENFORCE(
w_dims[0] == ctx->Attrs().Get<int>("contextLength") * x_dims[1],
"Filter's height should be context_length * "
"input_hidden_size .");
ctx->SetOutputDim("Out", {x_dims[0], w_dims[1]});
ctx->SetOutputDim("ColMat", {x_dims[0], w_dims[0]});
ctx->ShareLoD("X", "Out");
}
framework::OpKernelType FusionSeqConvEltAddReluOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
void FusionSeqConvEltAddReluOpMaker::Make() {
AddInput("X",
"(LoDTensor) the input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x.");
// PaddingData only support false yet, should be ensured at pass.
AddInput("Filter",
"(Tensor) same as the input(Filter) of sequence conv op is an "
"learnable parameter."
"This is a tensor with shape (K, N), where K is the "
"context_length * dim size of x, N is the output feature size.");
AddInput("Bias",
"(Tensor) the learnable weights. shape (1, N), where N is the "
"output feature size");
AddOutput(
"Out",
"(LoDTensor) the output(Out) is a LodTensor, which support "
"variable-time length output sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T, N), where, T is the "
"total time steps in this mini-batch, N is the output feature size.");
AddOutput("ColMat",
"(Tensor) (T, K), where T is where T is the "
"total time steps in this mini-batch, K is height of Filter")
.AsIntermediate();
AddAttr<int>("contextLength",
"(int) the contextLength of FusionSeqConvEltAddReluOp is the "
"height of the convolution kernel.")
.GreaterThan(0);
AddAttr<int>("contextStart",
"(int, default:0) the contextStart of FusionSeqConvEltAddReluOp "
"represents the beginning of the convolution of the number of "
"rows of sequence, which can be negative. The negative number "
"means to pad contextStart time-steps of zeros or learnable "
"parameters at the beginning of each instance. The positive "
"number means to skip contextStart time-steps of each "
"instance.")
.SetDefault(0);
AddAttr<int>(
"contextStride",
"(int, default:1) the contextStride of FusionSeqConvEltAddReluOp "
"represents the stride length of convolution kernel. "
"Currently, FusionSeqConvEltAddReluOp only supports"
"contextStride=1.")
.SetDefault(1)
.GreaterThan(0);
AddComment(R"DOC(
Fusion Sequence Conv and ElementwiseAdd Operator.
)DOC");
}
template <typename T>
class FusionSeqConvEltAddReluKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using DeviceContext = paddle::platform::CPUDeviceContext;
auto* x = ctx.Input<LoDTensor>("X");
auto* w = ctx.Input<Tensor>("Filter");
auto* b = ctx.Input<Tensor>("Bias");
auto* y = ctx.Output<LoDTensor>("Out");
auto* col = ctx.Output<Tensor>("ColMat");
auto x_lod = x->lod();
auto x_dims = x->dims();
auto w_dims = w->dims();
PADDLE_ENFORCE_EQ(b->numel(), w_dims[1],
"bias size should be equal to output feature size.");
PADDLE_ENFORCE_EQ(x_lod.size(), 1UL,
"Only support one level sequence now.");
const T* x_data = x->data<T>();
const T* w_data = w->data<T>();
const T* b_data = b->data<T>();
T* y_data = y->mutable_data<T>(ctx.GetPlace());
T* col_data = col->mutable_data<T>(ctx.GetPlace());
int context_start = ctx.Attr<int>("contextStart");
int context_length = ctx.Attr<int>("contextLength");
int up_pad = std::max(0, -context_start);
int down_pad = std::max(0, context_start + context_length - 1);
// im2col
int src_mat_w = static_cast<int>(x_dims[1]);
int src_mat_w_sz = src_mat_w * sizeof(T);
int col_mat_w = static_cast<int>(w_dims[0]);
int col_mat_w_sz = col_mat_w * sizeof(T);
for (int i = 0; i < static_cast<int>(x_lod[0].size()) - 1; ++i) {
int st = x_lod[0][i];
int ed = x_lod[0][i + 1];
const T* src_data = x_data + st * src_mat_w;
T* dst_data = col_data + st * col_mat_w;
int seq_len = ed - st;
if (seq_len > up_pad + down_pad) {
// zero all up_pad
std::memset(dst_data, 0, up_pad * col_mat_w_sz);
// fill up_pad data
dst_data = dst_data + up_pad * src_mat_w;
int copy_size = col_mat_w_sz - up_pad * src_mat_w_sz;
for (int j = 0; j < up_pad; ++j) {
// blas.VCOPY?
std::memcpy(dst_data, src_data, copy_size);
dst_data += (col_mat_w - src_mat_w);
copy_size += src_mat_w_sz;
}
// fill data
for (int j = 0; j < seq_len - up_pad - down_pad; ++j) {
std::memcpy(dst_data, src_data, copy_size);
dst_data += col_mat_w;
src_data += src_mat_w;
}
// zero all down_pad
std::memset(dst_data, 0, down_pad * col_mat_w_sz);
// fill down_pad data
copy_size -= src_mat_w_sz;
for (int j = 0; j < down_pad; ++j) {
std::memcpy(dst_data, src_data, copy_size);
dst_data += col_mat_w;
src_data += src_mat_w;
copy_size -= src_mat_w_sz;
}
} else {
PADDLE_ENFORCE_GE(context_length, up_pad + down_pad + 1);
std::memset(dst_data, 0, seq_len * col_mat_w_sz);
int zero_sz = up_pad * src_mat_w_sz;
int seq_len_size = seq_len * src_mat_w_sz;
for (int j = 0; j < std::min(up_pad, seq_len); ++j) {
int copy_size = std::min(seq_len_size, col_mat_w_sz - zero_sz);
std::memcpy(dst_data + zero_sz / sizeof(T), src_data, copy_size);
dst_data += col_mat_w;
zero_sz -= src_mat_w_sz;
}
zero_sz = down_pad * src_mat_w_sz;
dst_data = col_data + (ed - 1) * col_mat_w;
src_data = x_data + (ed - up_pad - 1) * src_mat_w;
for (int j = 0; j < std::min(0, seq_len - up_pad); ++j) {
int copy_size = std::min(seq_len_size, col_mat_w_sz - zero_sz);
std::memcpy(dst_data, src_data, copy_size);
dst_data -= col_mat_w;
src_data += src_mat_w;
zero_sz -= src_mat_w_sz;
}
}
}
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
math::FCCompute<DeviceContext, T>(blas, x_dims[0], w_dims[1], w_dims[0],
col_data, w_data, y_data, b_data, true);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_seqconv_eltadd_relu, ops::FusionSeqConvEltAddReluOp,
ops::FusionSeqConvEltAddReluOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OP_CPU_KERNEL(fusion_seqconv_eltadd_relu,
ops::FusionSeqConvEltAddReluKernel<float>,
ops::FusionSeqConvEltAddReluKernel<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
class FusionSeqConvEltAddReluOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class FusionSeqConvEltAddReluOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册