Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3bc305b6
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3bc305b6
编写于
6月 11, 2019
作者:
L
lijianshe02
提交者:
GitHub
6月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add conv2d, pool2d op and kernels test=develop (#17939)
* add conv2d, pool2d op and kernels test=develop
上级
a5241e1d
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
562 addition
and
0 deletion
+562
-0
paddle/fluid/lite/api/cxx_api_test.cc
paddle/fluid/lite/api/cxx_api_test.cc
+6
-0
paddle/fluid/lite/core/hvy_tensor.h
paddle/fluid/lite/core/hvy_tensor.h
+3
-0
paddle/fluid/lite/kernels/x86/CMakeLists.txt
paddle/fluid/lite/kernels/x86/CMakeLists.txt
+4
-0
paddle/fluid/lite/kernels/x86/conv_compute.cc
paddle/fluid/lite/kernels/x86/conv_compute.cc
+169
-0
paddle/fluid/lite/kernels/x86/pool_compute.cc
paddle/fluid/lite/kernels/x86/pool_compute.cc
+80
-0
paddle/fluid/lite/operators/CMakeLists.txt
paddle/fluid/lite/operators/CMakeLists.txt
+4
-0
paddle/fluid/lite/operators/conv_op.cc
paddle/fluid/lite/operators/conv_op.cc
+60
-0
paddle/fluid/lite/operators/conv_op.h
paddle/fluid/lite/operators/conv_op.h
+94
-0
paddle/fluid/lite/operators/pool_op.cc
paddle/fluid/lite/operators/pool_op.cc
+78
-0
paddle/fluid/lite/operators/pool_op.h
paddle/fluid/lite/operators/pool_op.h
+64
-0
未找到文件。
paddle/fluid/lite/api/cxx_api_test.cc
浏览文件 @
3bc305b6
...
@@ -131,6 +131,9 @@ USE_LITE_OP(square)
...
@@ -131,6 +131,9 @@ USE_LITE_OP(square)
USE_LITE_OP
(
softmax
)
USE_LITE_OP
(
softmax
)
USE_LITE_OP
(
dropout
)
USE_LITE_OP
(
dropout
)
USE_LITE_OP
(
concat
)
USE_LITE_OP
(
concat
)
USE_LITE_OP
(
conv2d
)
USE_LITE_OP
(
depthwise_conv2d
)
USE_LITE_OP
(
pool2d
)
USE_LITE_KERNEL
(
feed
,
kHost
,
kAny
,
kAny
,
def
);
USE_LITE_KERNEL
(
feed
,
kHost
,
kAny
,
kAny
,
def
);
USE_LITE_KERNEL
(
fetch
,
kHost
,
kAny
,
kAny
,
def
);
USE_LITE_KERNEL
(
fetch
,
kHost
,
kAny
,
kAny
,
def
);
...
@@ -145,6 +148,9 @@ USE_LITE_KERNEL(elementwise_add, kX86, kFloat, kNCHW, def);
...
@@ -145,6 +148,9 @@ USE_LITE_KERNEL(elementwise_add, kX86, kFloat, kNCHW, def);
USE_LITE_KERNEL
(
softmax
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
softmax
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
dropout
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
dropout
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
concat
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
concat
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
conv2d
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
depthwise_conv2d
,
kX86
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
pool2d
,
kX86
,
kFloat
,
kNCHW
,
def
);
#endif
#endif
#ifdef LITE_WITH_CUDA
#ifdef LITE_WITH_CUDA
...
...
paddle/fluid/lite/core/hvy_tensor.h
浏览文件 @
3bc305b6
...
@@ -110,6 +110,9 @@ class TensorHvy : public TensorBase<TensorHvy> {
...
@@ -110,6 +110,9 @@ class TensorHvy : public TensorBase<TensorHvy> {
void
ShareDataWith
(
const
TensorHvy
&
other
)
{
void
ShareDataWith
(
const
TensorHvy
&
other
)
{
data_
.
ShareDataWith
(
other
.
data_
);
data_
.
ShareDataWith
(
other
.
data_
);
}
}
void
ShareDataWith
(
const
framework
::
Tensor
&
other
)
{
data_
.
ShareDataWith
(
other
);
}
void
CopyDataFrom
(
const
TensorHvy
&
other
)
{
void
CopyDataFrom
(
const
TensorHvy
&
other
)
{
data_
.
mutable_data
(
other
.
data_
.
place
(),
other
.
data_
.
type
());
data_
.
mutable_data
(
other
.
data_
.
place
(),
other
.
data_
.
type
());
TensorCopySync
(
other
.
data_
,
data_
.
place
(),
&
data_
);
TensorCopySync
(
other
.
data_
,
data_
.
place
(),
&
data_
);
...
...
paddle/fluid/lite/kernels/x86/CMakeLists.txt
浏览文件 @
3bc305b6
...
@@ -15,6 +15,8 @@ cc_library(elementwise_compute_x86 SRCS elementwise_compute.cc DEPS ${lite_kerne
...
@@ -15,6 +15,8 @@ cc_library(elementwise_compute_x86 SRCS elementwise_compute.cc DEPS ${lite_kerne
cc_library
(
softmax_compute_x86 SRCS softmax_compute.cc DEPS
${
lite_kernel_deps
}
softmax
)
cc_library
(
softmax_compute_x86 SRCS softmax_compute.cc DEPS
${
lite_kernel_deps
}
softmax
)
cc_library
(
dropout_compute_x86 SRCS dropout_compute.cc DEPS
${
lite_kernel_deps
}
)
cc_library
(
dropout_compute_x86 SRCS dropout_compute.cc DEPS
${
lite_kernel_deps
}
)
cc_library
(
concat_compute_x86 SRCS concat_compute.cc DEPS
${
lite_kernel_deps
}
)
cc_library
(
concat_compute_x86 SRCS concat_compute.cc DEPS
${
lite_kernel_deps
}
)
cc_library
(
conv_compute_x86 SRCS conv_compute.cc DEPS
${
lite_kernel_deps
}
blas im2col vol2col
)
cc_library
(
pool_compute_x86 SRCS pool_compute.cc DEPS
${
lite_kernel_deps
}
pooling
)
set
(
x86_kernels
set
(
x86_kernels
activation_compute_x86
activation_compute_x86
...
@@ -28,6 +30,8 @@ set(x86_kernels
...
@@ -28,6 +30,8 @@ set(x86_kernels
softmax_compute_x86
softmax_compute_x86
dropout_compute_x86
dropout_compute_x86
concat_compute_x86
concat_compute_x86
conv_compute_x86
pool_compute_x86
)
)
set
(
x86_kernels
"
${
x86_kernels
}
"
CACHE INTERNAL
"x86 kernels"
)
set
(
x86_kernels
"
${
x86_kernels
}
"
CACHE INTERNAL
"x86 kernels"
)
paddle/fluid/lite/kernels/x86/conv_compute.cc
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/operators/conv_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/vol2col.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>&
filter_dim
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
template
<
typename
T
>
class
Conv2dCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
ConvParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
ConvParam
>
();
lite
::
Tensor
filter
=
*
param
.
filter
;
param
.
output
->
template
mutable_data
<
T
>();
const
int
batch_size
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
filter
.
dims
().
Vectorize
());
std
::
vector
<
int64_t
>
output_shape_vec
(
param
.
output
->
dims
().
Vectorize
());
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
param
.
x
->
dims
()[
1
]
/
param
.
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
lite
::
DDim
col_shape
(
col_shape_vec
);
lite
::
DDim
col_matrix_shape
=
col_shape
.
Flattern2D
(
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
param
.
strides
,
param
.
paddings
,
param
.
dilations
);
lite
::
Tensor
col
;
lite
::
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
Resize
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
lite
::
DDim
input_shape
=
param
.
x
->
dims
().
Slice
(
1
,
param
.
x
->
dims
().
size
());
lite
::
DDim
filter_matrix_shape
(
std
::
vector
<
int64_t
>
{
filter
.
dims
()[
0
],
filter
.
dims
().
production
()
/
filter
.
dims
()[
0
]});
filter
.
Resize
(
filter_matrix_shape
);
lite
::
DDim
output_matrix_shape
(
std
::
vector
<
int64_t
>
{
param
.
output
->
dims
()[
1
],
param
.
output
->
dims
().
production
()
/
(
param
.
output
->
dims
()[
0
]
*
param
.
output
->
dims
()[
1
])});
int
in_step
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
1
])
/
param
.
groups
;
int
out_step
=
static_cast
<
int
>
(
param
.
output
->
dims
()[
1
])
/
param
.
groups
;
paddle
::
operators
::
math
::
Vol2ColFunctor
<
platform
::
CPUDeviceContext
,
T
>
vol2col
;
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
platform
::
CPUDeviceContext
,
T
>
im2col
;
auto
blas
=
paddle
::
operators
::
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
platform
::
CPUDeviceContext
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
lite
::
Tensor
in_batch
;
in_batch
.
ShareDataWith
(
param
.
x
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
.
data
()));
lite
::
Tensor
out_batch
;
out_batch
.
ShareDataWith
(
param
.
output
->
raw_tensor
().
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
.
data
()));
for
(
int
g
=
0
;
g
<
param
.
groups
;
g
++
)
{
lite
::
Tensor
in_slice
;
in_slice
.
ShareDataWith
(
in_batch
.
raw_tensor
().
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
));
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
platform
::
CPUDeviceContext
(),
in_slice
.
raw_tensor
(),
param
.
dilations
,
param
.
strides
,
std
::
vector
<
int
>
{
param
.
paddings
[
0
],
param
.
paddings
[
1
],
param
.
paddings
[
0
],
param
.
paddings
[
1
]},
&
(
col
.
raw_tensor
()));
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
platform
::
CPUDeviceContext
(),
in_slice
.
raw_tensor
(),
param
.
dilations
,
param
.
strides
,
param
.
paddings
,
&
(
col
.
raw_tensor
()));
}
// gemm
lite
::
Tensor
out_slice
;
out_slice
.
ShareDataWith
(
out_batch
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
lite
::
Tensor
filter_slice
;
filter_slice
.
ShareDataWith
(
filter
.
raw_tensor
().
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
));
blas
.
MatMul
(
filter_slice
.
raw_tensor
(),
false
,
col_matrix
.
raw_tensor
(),
false
,
T
(
1.0
),
&
(
out_slice
.
raw_tensor
()),
T
(
0.0
));
}
}
}
virtual
~
Conv2dCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
conv2d
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
Conv2dCompute
<
float
>
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
REGISTER_LITE_KERNEL
(
depthwise_conv2d
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
Conv2dCompute
<
float
>
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Filter"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Bias"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Output"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
paddle/fluid/lite/kernels/x86/pool_compute.cc
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Eigen/Core>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
PoolCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
PoolParam
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
if
(
param
.
global_pooling
)
{
for
(
size_t
i
=
0
;
i
<
param
.
ksize
.
size
();
++
i
)
{
param
.
paddings
[
i
]
=
0
;
param
.
ksize
[
i
]
=
static_cast
<
int
>
(
param
.
x
->
dims
()[
i
+
2
]);
}
}
switch
(
param
.
ksize
.
size
())
{
case
2
:
{
if
(
param
.
pooling_type
==
"max"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
platform
::
CPUDeviceContext
,
paddle
::
operators
::
math
::
MaxPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool2d_forward
(
platform
::
CPUDeviceContext
(),
param
.
x
->
raw_tensor
(),
param
.
ksize
,
param
.
strides
,
param
.
paddings
,
pool_process
,
true
,
false
,
&
(
param
.
output
->
raw_tensor
()));
}
else
if
(
param
.
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
platform
::
CPUDeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
pool2d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool2d_forward
(
platform
::
CPUDeviceContext
(),
param
.
x
->
raw_tensor
(),
param
.
ksize
,
param
.
strides
,
param
.
paddings
,
pool_process
,
param
.
exclusive
,
param
.
adaptive
,
&
(
param
.
output
->
raw_tensor
()));
}
}
break
;
case
3
:
{
}
break
;
}
}
virtual
~
PoolCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
pool2d
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
PoolCompute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
paddle/fluid/lite/operators/CMakeLists.txt
浏览文件 @
3bc305b6
...
@@ -17,6 +17,8 @@ cc_library(fill_constant_op_lite SRCS fill_constant_op.cc DEPS ${op_DEPS})
...
@@ -17,6 +17,8 @@ cc_library(fill_constant_op_lite SRCS fill_constant_op.cc DEPS ${op_DEPS})
cc_library
(
op_params_lite SRCS op_params.cc DEPS
${
tensor_lite
}
any_lite framework_proto_lite
)
cc_library
(
op_params_lite SRCS op_params.cc DEPS
${
tensor_lite
}
any_lite framework_proto_lite
)
cc_library
(
dropout_op_lite SRCS dropout_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
dropout_op_lite SRCS dropout_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
concat_op_lite SRCS concat_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
concat_op_lite SRCS concat_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
conv_op_lite SRCS conv_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
pool_op_lite SRCS pool_op.cc DEPS
${
op_DEPS
}
)
set
(
ops_lite
set
(
ops_lite
fc_op_lite
fc_op_lite
...
@@ -34,6 +36,8 @@ set(ops_lite
...
@@ -34,6 +36,8 @@ set(ops_lite
activation_ops_lite
activation_ops_lite
dropout_op_lite
dropout_op_lite
concat_op_lite
concat_op_lite
conv_op_lite
pool_op_lite
PARENT_SCOPE
)
PARENT_SCOPE
)
lite_cc_test
(
test_fc_op_lite SRCS fc_op_test.cc
lite_cc_test
(
test_fc_op_lite SRCS fc_op_test.cc
...
...
paddle/fluid/lite/operators/conv_op.cc
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/conv_op.h"
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
ConvOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
output
);
CHECK_OR_FALSE
(
param_
.
filter
);
return
true
;
}
bool
ConvOpLite
::
InferShape
()
const
{
auto
in_dims
=
param_
.
x
->
dims
();
auto
filter_dims
=
param_
.
filter
->
dims
();
std
::
vector
<
int
>
strides
=
param_
.
strides
;
std
::
vector
<
int
>
paddings
=
param_
.
paddings
;
int
groups
=
param_
.
groups
;
std
::
vector
<
int
>
dilations
=
param_
.
dilations
;
CHECK_OR_FALSE
(
in_dims
.
size
()
==
4
||
in_dims
.
size
()
==
5
);
CHECK_EQ_OR_FALSE
(
in_dims
.
size
(),
filter_dims
.
size
());
CHECK_OR_FALSE
(
in_dims
.
size
()
-
strides
.
size
()
==
2U
);
CHECK_EQ_OR_FALSE
(
paddings
.
size
(),
strides
.
size
());
CHECK_EQ_OR_FALSE
(
in_dims
[
1
],
filter_dims
[
1
]
*
groups
);
CHECK_EQ_OR_FALSE
(
filter_dims
[
0
]
%
groups
,
0
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
param_
.
output
->
Resize
(
lite
::
DDim
(
output_shape
));
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
conv2d
,
paddle
::
lite
::
operators
::
ConvOpLite
);
REGISTER_LITE_OP
(
depthwise_conv2d
,
paddle
::
lite
::
operators
::
ConvOpLite
);
paddle/fluid/lite/operators/conv_op.h
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
inline
int
ConvOutputSize
(
int
input_size
,
int
filter_size
,
int
dilation
,
int
padding
,
int
stride
)
{
const
int
dkernel
=
dilation
*
(
filter_size
-
1
)
+
1
;
int
output_size
=
(
input_size
+
2
*
padding
-
dkernel
)
/
stride
+
1
;
CHECK_OR_FALSE
(
output_size
>
0
);
return
output_size
;
}
inline
bool
IsExpand
(
const
std
::
vector
<
int64_t
>&
filter_dim
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
}
return
!
(
filter_1
&&
strides_1
&&
padding_0
&&
dilation_1
);
}
class
ConvOpLite
:
public
OpLite
{
public:
ConvOpLite
()
{}
explicit
ConvOpLite
(
const
std
::
string
&
type
)
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
auto
X
=
op_desc
.
Input
(
"Input"
).
front
();
auto
Filter
=
op_desc
.
Input
(
"Filter"
).
front
();
auto
Bias
=
op_desc
.
Input
(
"Bias"
).
front
();
// auto ResidualData = op_desc.Input("ResidualData");
auto
Out
=
op_desc
.
Output
(
"Output"
).
front
();
param_
.
x
=
scope
->
FindVar
(
X
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
filter
=
scope
->
FindVar
(
Filter
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
bias
=
scope
->
FindVar
(
Bias
)
->
GetMutable
<
lite
::
Tensor
>
();
// param_.residualData =
// scope->FindVar(ResidualData)->GetMutable<lite::Tensor>();
param_
.
output
=
scope
->
FindVar
(
Out
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
strides
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
param_
.
paddings
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
param_
.
groups
=
op_desc
.
GetAttr
<
int
>
(
"groups"
);
param_
.
dilations
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"dilations"
);
return
true
;
}
std
::
string
DebugString
()
const
override
{
return
"conv2d"
;
}
private:
mutable
ConvParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/operators/pool_op.cc
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/pool_op.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
int
PoolOutputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
,
bool
ceil_mode
)
{
int
output_size
;
if
(
!
ceil_mode
)
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
}
else
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
CHECK_OR_FALSE
(
output_size
>
0
);
return
output_size
;
}
bool
PoolOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
output
);
return
true
;
}
bool
PoolOpLite
::
InferShape
()
const
{
const
auto
input_dims
=
param_
.
x
->
dims
();
CHECK_OR_FALSE
(
input_dims
.
size
()
==
4
||
input_dims
.
size
()
==
5
);
if
(
param_
.
global_pooling
)
{
param_
.
ksize
.
resize
(
static_cast
<
size_t
>
(
input_dims
.
size
())
-
2
);
for
(
size_t
i
=
0
;
i
<
param_
.
ksize
.
size
();
++
i
)
{
param_
.
paddings
[
i
]
=
0
;
param_
.
ksize
[
i
]
=
static_cast
<
int
>
(
input_dims
[
i
+
2
]);
}
}
CHECK_OR_FALSE
(
input_dims
.
size
()
-
param_
.
ksize
.
size
()
==
2U
);
CHECK_EQ_OR_FALSE
(
param_
.
ksize
.
size
(),
param_
.
strides
.
size
());
CHECK_EQ_OR_FALSE
(
param_
.
ksize
.
size
(),
param_
.
paddings
.
size
());
std
::
vector
<
int64_t
>
output_shape
({
input_dims
[
0
],
input_dims
[
1
]});
if
(
param_
.
adaptive
)
{
output_shape
.
insert
(
output_shape
.
end
(),
param_
.
ksize
.
begin
(),
param_
.
ksize
.
end
());
}
else
{
for
(
size_t
i
=
0
;
i
<
param_
.
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
PoolOutputSize
(
input_dims
[
i
+
2
],
param_
.
ksize
[
i
],
param_
.
paddings
[
i
],
param_
.
strides
[
i
],
param_
.
ceil_mode
));
}
}
// share LoD
// param_.output->set_lod(param_.input->lod());
param_
.
output
->
Resize
(
lite
::
DDim
(
output_shape
));
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
pool2d
,
paddle
::
lite
::
operators
::
PoolOpLite
);
paddle/fluid/lite/operators/pool_op.h
0 → 100644
浏览文件 @
3bc305b6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
PoolOpLite
:
public
OpLite
{
public:
PoolOpLite
()
{}
explicit
PoolOpLite
(
const
std
::
string
&
type
)
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
// TODO(Superjomn) replace framework::OpDesc with a lite one.
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
{
auto
input
=
op_desc
.
Input
(
"X"
).
front
();
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
param_
.
x
=
scope
->
FindVar
(
input
)
->
GetMutable
<
Tensor
>
();
param_
.
output
=
scope
->
FindVar
(
out
)
->
GetMutable
<
Tensor
>
();
param_
.
pooling_type
=
op_desc
.
GetAttr
<
std
::
string
>
(
"pooling_type"
);
param_
.
ksize
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"ksize"
);
param_
.
strides
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"strides"
);
param_
.
paddings
=
op_desc
.
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
param_
.
ceil_mode
=
op_desc
.
GetAttr
<
bool
>
(
"ceil_mode"
);
param_
.
adaptive
=
op_desc
.
GetAttr
<
bool
>
(
"adaptive"
);
param_
.
global_pooling
=
op_desc
.
GetAttr
<
bool
>
(
"global_pooling"
);
return
true
;
}
std
::
string
DebugString
()
const
override
{
return
"pool"
;
}
private:
mutable
PoolParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录