Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3825b40f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3825b40f
编写于
1月 25, 2022
作者:
N
Noel
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[pnorm] fix bug in fp16 & optimize memory (#39011)
上级
c1e5a393
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
123 addition
and
97 deletion
+123
-97
paddle/fluid/operators/p_norm_op.cu
paddle/fluid/operators/p_norm_op.cu
+26
-66
paddle/fluid/operators/reduce_ops/logsumexp_op.h
paddle/fluid/operators/reduce_ops/logsumexp_op.h
+5
-4
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+15
-14
paddle/fluid/operators/reduce_ops/reduce_op_function.h
paddle/fluid/operators/reduce_ops/reduce_op_function.h
+1
-2
python/paddle/fluid/tests/unittests/test_norm_all.py
python/paddle/fluid/tests/unittests/test_norm_all.py
+76
-11
未找到文件。
paddle/fluid/operators/p_norm_op.cu
浏览文件 @
3825b40f
...
@@ -76,22 +76,13 @@ struct AbsFunctor {
...
@@ -76,22 +76,13 @@ struct AbsFunctor {
}
}
};
};
template
<
typename
T
x
,
typename
Ty
=
Tx
>
template
<
typename
T
>
struct
UnsignedPowFunctor
{
struct
UnsignedPowFunctor
{
HOSTDEVICE
explicit
inline
UnsignedPowFunctor
(
float
porder
)
{
HOSTDEVICE
explicit
inline
UnsignedPowFunctor
(
float
porder
)
{
this
->
porder
=
porder
;
this
->
porder
=
porder
;
}
}
HOSTDEVICE
inline
Ty
operator
()(
const
Tx
x
)
const
{
HOSTDEVICE
inline
T
operator
()(
const
T
x
)
const
{
return
static_cast
<
Ty
>
(
inline_pow
(
inline_abs
(
x
),
static_cast
<
Tx
>
(
porder
)));
return
static_cast
<
T
>
(
inline_pow
(
inline_abs
(
x
),
static_cast
<
T
>
(
porder
)));
}
float
porder
;
};
template
<
typename
Tx
,
typename
Ty
=
Tx
>
struct
PowFunctor
{
HOSTDEVICE
explicit
inline
PowFunctor
(
float
porder
)
{
this
->
porder
=
porder
;
}
HOSTDEVICE
inline
Ty
operator
()(
const
Tx
x
)
const
{
return
static_cast
<
Ty
>
(
inline_pow
(
x
,
static_cast
<
Tx
>
(
porder
)));
}
}
float
porder
;
float
porder
;
};
};
...
@@ -105,13 +96,11 @@ class PnormCUDAKernel : public framework::OpKernel<T> {
...
@@ -105,13 +96,11 @@ class PnormCUDAKernel : public framework::OpKernel<T> {
const
T
*
x
=
in_x
->
data
<
T
>
();
const
T
*
x
=
in_x
->
data
<
T
>
();
T
*
norm
=
out_norm
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
norm
=
out_norm
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
xdim
=
in_x
->
dims
();
auto
xdim
=
in_x
->
dims
();
auto
ndim
=
out_norm
->
dims
();
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
std
::
vector
<
int
>
reduce_axis
=
{
axis
};
std
::
vector
<
int
>
reduce_axis
=
{
axis
};
reduce_axis
=
GetReduceDim
(
reduce_axis
,
xdim
.
size
(),
asvector
);
reduce_axis
=
GetReduceDim
(
reduce_axis
,
xdim
.
size
(),
asvector
);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
...
@@ -125,29 +114,17 @@ class PnormCUDAKernel : public framework::OpKernel<T> {
...
@@ -125,29 +114,17 @@ class PnormCUDAKernel : public framework::OpKernel<T> {
TensorReduceFunctorImpl
<
T
,
T
,
kps
::
MinFunctor
,
AbsFunctor
<
T
>>
(
TensorReduceFunctorImpl
<
T
,
T
,
kps
::
MinFunctor
,
AbsFunctor
<
T
>>
(
*
in_x
,
out_norm
,
AbsFunctor
<
T
>
(),
reduce_axis
,
stream
);
*
in_x
,
out_norm
,
AbsFunctor
<
T
>
(),
reduce_axis
,
stream
);
}
else
{
}
else
{
framework
::
Tensor
tmp_x
;
TensorReduceFunctorImpl
<
T
,
T
,
kps
::
AddFunctor
,
UnsignedPowFunctor
<
T
>>
(
tmp_x
.
mutable_data
<
T
>
(
xdim
,
ctx
.
GetPlace
());
*
in_x
,
out_norm
,
UnsignedPowFunctor
<
T
>
(
porder
),
reduce_axis
,
stream
);
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
in_x
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
&
tmp_x
};
const
framework
::
Tensor
*
tmp_norm
=
out_norm
;
auto
func
=
UnsignedPowFunctor
<
MT
,
T
>
(
porder
);
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
tmp_norm
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
out_norm
};
const
auto
&
cuda_ctx
=
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
paddle
::
operators
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
MT
,
T
,
UnsignedPowFunctor
<
MT
,
T
>>
(
cuda_ctx
,
ins
,
&
outs
,
func
);
framework
::
Tensor
tmp_y
;
tmp_y
.
mutable_data
<
T
>
(
ndim
,
ctx
.
GetPlace
());
TensorReduceFunctorImpl
<
T
,
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
<
T
>>
(
tmp_x
,
&
tmp_y
,
kps
::
IdentityFunctor
<
T
>
(),
reduce_axis
,
stream
);
const
framework
::
Tensor
*
tmp_norm
=
&
tmp_y
;
ins
=
{
tmp_norm
};
outs
=
{
out_norm
};
auto
func_inverse
=
UnsignedPowFunctor
<
MT
,
T
>
(
1.
/
porder
);
paddle
::
operators
::
LaunchSameDimsElementwiseCudaKernel
<
paddle
::
operators
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
MT
,
T
,
UnsignedPowFunctor
<
MT
,
T
>>
(
ElementwiseType
::
kUnary
,
T
,
T
,
UnsignedPowFunctor
<
T
>>
(
cuda_ctx
,
ins
,
&
outs
,
func_inverse
);
cuda_ctx
,
ins
,
&
outs
,
UnsignedPowFunctor
<
T
>
(
1.
/
porder
)
);
}
}
}
}
};
};
...
@@ -158,29 +135,25 @@ struct AbsMaxAndMinGradFunctor {
...
@@ -158,29 +135,25 @@ struct AbsMaxAndMinGradFunctor {
typename
DY
,
typename
Dim
>
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
((
*
x
).
abs
()
==
y
->
broadcast
(
dim
));
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
(
*
x
).
sign
()
*
auto
ones
=
dx
->
constant
(
static_cast
<
T
>
(
1.
));
((
*
x
).
abs
()
==
y
->
broadcast
(
dim
)).
template
cast
<
T
>();
auto
negs
=
dx
->
constant
(
static_cast
<
T
>
(
-
1.
));
auto
zeros
=
dx
->
constant
(
static_cast
<
T
>
(
0.
));
auto
positives
=
(
*
x
)
>
zeros
;
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
equals
.
select
(
ones
,
zeros
)
*
positives
.
select
(
ones
,
negs
);
}
}
};
};
template
<
typename
T
>
template
<
typename
T
>
struct
PNormPostGradFunctor
{
struct
PNormGradFunctor
{
HOSTDEVICE
explicit
inline
PNormGradFunctor
(
float
porder
)
{
this
->
porder
=
static_cast
<
T
>
(
porder
-
1.
);
}
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
const
Dim
&
dim
,
int
size
)
{
auto
ones
=
dx
->
constant
(
static_cast
<
T
>
(
1.
));
dx
->
device
(
place
)
=
(
*
x
).
abs
().
pow
(
this
->
porder
)
*
(
*
x
).
sign
()
*
auto
negs
=
dx
->
constant
(
static_cast
<
T
>
(
-
1.
));
dy
->
broadcast
(
dim
)
*
auto
zeros
=
dx
->
constant
(
static_cast
<
T
>
(
0.
));
(
*
y
).
pow
(
-
this
->
porder
).
broadcast
(
dim
);
auto
positives
=
(
*
x
)
>
zeros
;
dx
->
device
(
place
)
=
(
*
dx
)
*
dy
->
broadcast
(
dim
)
*
y
->
broadcast
(
dim
)
*
positives
.
select
(
ones
,
negs
);
}
}
T
porder
;
};
};
template
<
typename
DeviceContext
,
typename
T
,
typename
AttrType
=
T
>
template
<
typename
DeviceContext
,
typename
T
,
typename
AttrType
=
T
>
...
@@ -207,26 +180,13 @@ class PnormGradCUDAKernel : public framework::OpKernel<T> {
...
@@ -207,26 +180,13 @@ class PnormGradCUDAKernel : public framework::OpKernel<T> {
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
set_zero
(
cuda_ctx
,
out_dx
,
static_cast
<
T
>
(
0
));
set_zero
(
cuda_ctx
,
out_dx
,
static_cast
<
T
>
(
0
));
}
else
if
(
porder
==
INFINITY
||
porder
==
-
INFINITY
)
{
}
else
if
(
porder
==
INFINITY
||
porder
==
-
INFINITY
)
{
AbsMaxAndMinGradFunctor
<
T
>
functor
;
LaunchReduceGradKernel
<
DeviceContext
,
T
,
AbsMaxAndMinGradFunctor
<
T
>>
(
LaunchReduceGradKernel
<
DeviceContext
,
T
,
AbsMaxAndMinGradFunctor
<
T
>>
(
ctx
,
in_x
,
in_norm
,
in_norm_dy
,
out_dx
,
dims
,
reduce_all
);
ctx
,
in_x
,
in_norm
,
in_norm_dy
,
out_dx
,
functor
,
dims
,
reduce_all
);
}
else
{
}
else
{
framework
::
Tensor
tmp_norm
;
auto
functor
=
PNormGradFunctor
<
T
>
(
porder
);
tmp_norm
.
mutable_data
<
T
>
(
in_norm
->
dims
(),
ctx
.
GetPlace
());
LaunchReduceGradKernel
<
DeviceContext
,
T
,
PNormGradFunctor
<
T
>>
(
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
in_norm
};
ctx
,
in_x
,
in_norm
,
in_norm_dy
,
out_dx
,
functor
,
dims
,
reduce_all
);
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
&
tmp_norm
};
auto
pow_functor
=
PowFunctor
<
T
>
(
1.
-
porder
);
paddle
::
operators
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
,
PowFunctor
<
T
>>
(
cuda_ctx
,
ins
,
&
outs
,
pow_functor
);
ins
=
{
in_x
};
outs
=
{
out_dx
};
auto
unsigned_pow
=
UnsignedPowFunctor
<
T
>
(
porder
-
1.
);
paddle
::
operators
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
,
UnsignedPowFunctor
<
T
>>
(
cuda_ctx
,
ins
,
&
outs
,
unsigned_pow
);
const
framework
::
Tensor
*
tmp_norm_const
=
&
tmp_norm
;
LaunchReduceGradKernel
<
DeviceContext
,
T
,
PNormPostGradFunctor
<
T
>>
(
ctx
,
in_x
,
tmp_norm_const
,
in_norm_dy
,
out_dx
,
dims
,
reduce_all
);
}
}
}
}
};
};
...
...
paddle/fluid/operators/reduce_ops/logsumexp_op.h
浏览文件 @
3825b40f
...
@@ -139,26 +139,27 @@ class LogsumexpGradKernel : public framework::OpKernel<T> {
...
@@ -139,26 +139,27 @@ class LogsumexpGradKernel : public framework::OpKernel<T> {
broadcast_dim
[
0
]);
broadcast_dim
[
0
]);
}
else
{
}
else
{
int
rank
=
input
->
dims
().
size
();
int
rank
=
input
->
dims
().
size
();
LogsumexpGradFunctor
functor
;
switch
(
rank
)
{
switch
(
rank
)
{
case
1
:
case
1
:
ReduceGradFunctor
<
DeviceContext
,
T
,
1
,
LogsumexpGradFunctor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
1
,
LogsumexpGradFunctor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
*
output_grad
,
input_grad
,
axis
);
*
output_grad
,
input_grad
,
functor
,
axis
);
break
;
break
;
case
2
:
case
2
:
ReduceGradFunctor
<
DeviceContext
,
T
,
2
,
LogsumexpGradFunctor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
2
,
LogsumexpGradFunctor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
*
output_grad
,
input_grad
,
axis
);
*
output_grad
,
input_grad
,
functor
,
axis
);
break
;
break
;
case
3
:
case
3
:
ReduceGradFunctor
<
DeviceContext
,
T
,
3
,
LogsumexpGradFunctor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
3
,
LogsumexpGradFunctor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
*
output_grad
,
input_grad
,
axis
);
*
output_grad
,
input_grad
,
functor
,
axis
);
break
;
break
;
case
4
:
case
4
:
ReduceGradFunctor
<
DeviceContext
,
T
,
4
,
LogsumexpGradFunctor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
4
,
LogsumexpGradFunctor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
context
.
template
device_context
<
DeviceContext
>(),
*
input
,
*
output
,
*
output_grad
,
input_grad
,
axis
);
*
output_grad
,
input_grad
,
functor
,
axis
);
break
;
break
;
}
}
}
}
...
...
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
3825b40f
...
@@ -143,7 +143,7 @@ void HandleLargeDimGrad(const framework::ExecutionContext& context,
...
@@ -143,7 +143,7 @@ void HandleLargeDimGrad(const framework::ExecutionContext& context,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
out
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
const
framework
::
Tensor
*
dout
,
framework
::
Tensor
*
dx
,
const
std
::
vector
<
int
>&
dims
)
{
Functor
functor
,
const
std
::
vector
<
int
>&
dims
)
{
const
int64_t
unreduced
=
out
->
numel
();
const
int64_t
unreduced
=
out
->
numel
();
const
int64_t
reduced
=
x
->
numel
()
/
unreduced
;
const
int64_t
reduced
=
x
->
numel
()
/
unreduced
;
DDim
out_dim
(
out
->
dims
());
DDim
out_dim
(
out
->
dims
());
...
@@ -157,7 +157,7 @@ void HandleLargeDimGrad(const framework::ExecutionContext& context,
...
@@ -157,7 +157,7 @@ void HandleLargeDimGrad(const framework::ExecutionContext& context,
dx
->
Resize
({
unreduced
,
reduced
});
dx
->
Resize
({
unreduced
,
reduced
});
ReduceGradFunctor
<
DeviceContext
,
T
,
2
,
Functor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
2
,
Functor
>
(
context
.
template
device_context
<
DeviceContext
>(),
shuffled_x
,
*
out
,
*
dout
,
context
.
template
device_context
<
DeviceContext
>(),
shuffled_x
,
*
out
,
*
dout
,
dx
,
{
1
});
dx
,
functor
,
{
1
});
// transpose dX
// transpose dX
std
::
vector
<
int
>
origin_axis
(
x_dim
.
size
());
std
::
vector
<
int
>
origin_axis
(
x_dim
.
size
());
GetOriginDimFromShuffled
(
x_dim
,
dims
,
&
origin_axis
);
GetOriginDimFromShuffled
(
x_dim
,
dims
,
&
origin_axis
);
...
@@ -333,7 +333,7 @@ void LaunchReduceGradKernel(const framework::ExecutionContext& context,
...
@@ -333,7 +333,7 @@ void LaunchReduceGradKernel(const framework::ExecutionContext& context,
const
framework
::
Tensor
*
input0
,
const
framework
::
Tensor
*
input0
,
const
framework
::
Tensor
*
input1
,
const
framework
::
Tensor
*
input1
,
const
framework
::
Tensor
*
input2
,
const
framework
::
Tensor
*
input2
,
paddle
::
framework
::
Tensor
*
output
,
paddle
::
framework
::
Tensor
*
output
,
Functor
functor
,
const
std
::
vector
<
int
>&
dims
,
const
std
::
vector
<
int
>&
dims
,
bool
reduce_all
=
false
)
{
bool
reduce_all
=
false
)
{
if
(
reduce_all
)
{
if
(
reduce_all
)
{
...
@@ -345,7 +345,6 @@ void LaunchReduceGradKernel(const framework::ExecutionContext& context,
...
@@ -345,7 +345,6 @@ void LaunchReduceGradKernel(const framework::ExecutionContext& context,
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
broadcast_dim
=
auto
broadcast_dim
=
Eigen
::
array
<
int
,
1
>
({{
static_cast
<
int
>
(
input0
->
numel
())}});
Eigen
::
array
<
int
,
1
>
({{
static_cast
<
int
>
(
input0
->
numel
())}});
Functor
functor
;
functor
(
place
,
&
x
,
&
x_reduce
,
&
x_grad
,
&
x_reduce_grad
,
broadcast_dim
,
functor
(
place
,
&
x
,
&
x_reduce
,
&
x_grad
,
&
x_reduce_grad
,
broadcast_dim
,
broadcast_dim
[
0
]);
broadcast_dim
[
0
]);
}
else
{
}
else
{
...
@@ -354,36 +353,36 @@ void LaunchReduceGradKernel(const framework::ExecutionContext& context,
...
@@ -354,36 +353,36 @@ void LaunchReduceGradKernel(const framework::ExecutionContext& context,
case
1
:
case
1
:
ReduceGradFunctor
<
DeviceContext
,
T
,
1
,
Functor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
1
,
Functor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
*
input2
,
output
,
dims
);
*
input2
,
output
,
functor
,
dims
);
break
;
break
;
case
2
:
case
2
:
ReduceGradFunctor
<
DeviceContext
,
T
,
2
,
Functor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
2
,
Functor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
*
input2
,
output
,
dims
);
*
input2
,
output
,
functor
,
dims
);
break
;
break
;
case
3
:
case
3
:
ReduceGradFunctor
<
DeviceContext
,
T
,
3
,
Functor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
3
,
Functor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
*
input2
,
output
,
dims
);
*
input2
,
output
,
functor
,
dims
);
break
;
break
;
case
4
:
case
4
:
ReduceGradFunctor
<
DeviceContext
,
T
,
4
,
Functor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
4
,
Functor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
*
input2
,
output
,
dims
);
*
input2
,
output
,
functor
,
dims
);
break
;
break
;
case
5
:
case
5
:
ReduceGradFunctor
<
DeviceContext
,
T
,
5
,
Functor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
5
,
Functor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
*
input2
,
output
,
dims
);
*
input2
,
output
,
functor
,
dims
);
break
;
break
;
case
6
:
case
6
:
ReduceGradFunctor
<
DeviceContext
,
T
,
6
,
Functor
>
(
ReduceGradFunctor
<
DeviceContext
,
T
,
6
,
Functor
>
(
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
context
.
template
device_context
<
DeviceContext
>(),
*
input0
,
*
input1
,
*
input2
,
output
,
dims
);
*
input2
,
output
,
functor
,
dims
);
break
;
break
;
default:
default:
HandleLargeDimGrad
<
DeviceContext
,
T
,
Functor
>
(
context
,
input0
,
input1
,
HandleLargeDimGrad
<
DeviceContext
,
T
,
Functor
>
(
input2
,
output
,
dims
);
context
,
input0
,
input1
,
input2
,
output
,
functor
,
dims
);
break
;
break
;
}
}
}
}
...
@@ -430,8 +429,10 @@ class ReduceGradKernel : public framework::OpKernel<T> {
...
@@ -430,8 +429,10 @@ class ReduceGradKernel : public framework::OpKernel<T> {
// NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
// NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
// not be set as Input in grad Maker, use Out_grad to replace here
// not be set as Input in grad Maker, use Out_grad to replace here
if
(
!
input1
)
input1
=
input2
;
if
(
!
input1
)
input1
=
input2
;
LaunchReduceGradKernel
<
DeviceContext
,
T
,
Functor
>
(
Functor
functor
;
context
,
input0
,
input1
,
input2
,
output
,
const_dims
,
reduce_all
);
LaunchReduceGradKernel
<
DeviceContext
,
T
,
Functor
>
(
context
,
input0
,
input1
,
input2
,
output
,
functor
,
const_dims
,
reduce_all
);
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
...
...
paddle/fluid/operators/reduce_ops/reduce_op_function.h
浏览文件 @
3825b40f
...
@@ -74,7 +74,7 @@ void ReduceGradFunctor(const DeviceContext& context,
...
@@ -74,7 +74,7 @@ void ReduceGradFunctor(const DeviceContext& context,
const
framework
::
Tensor
&
input0
,
const
framework
::
Tensor
&
input0
,
const
framework
::
Tensor
&
input1
,
const
framework
::
Tensor
&
input1
,
const
framework
::
Tensor
&
input2
,
const
framework
::
Tensor
&
input2
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
output
,
Functor
functor
,
const
std
::
vector
<
int
>&
dims
)
{
const
std
::
vector
<
int
>&
dims
)
{
auto
x
=
EigenTensor
<
T
,
D
>::
From
(
input0
);
auto
x
=
EigenTensor
<
T
,
D
>::
From
(
input0
);
auto
x_grad
=
EigenTensor
<
T
,
D
>::
From
(
*
output
);
auto
x_grad
=
EigenTensor
<
T
,
D
>::
From
(
*
output
);
...
@@ -100,7 +100,6 @@ void ReduceGradFunctor(const DeviceContext& context,
...
@@ -100,7 +100,6 @@ void ReduceGradFunctor(const DeviceContext& context,
auto
&
place
=
*
context
.
eigen_device
();
auto
&
place
=
*
context
.
eigen_device
();
Functor
functor
;
functor
(
place
,
&
x
,
&
x_reduce
,
&
x_grad
,
&
x_reduce_grad
,
broadcast_dim
,
functor
(
place
,
&
x
,
&
x_reduce
,
&
x_grad
,
&
x_reduce_grad
,
broadcast_dim
,
broad_cats_times
);
broad_cats_times
);
}
}
...
...
python/paddle/fluid/tests/unittests/test_norm_all.py
浏览文件 @
3825b40f
...
@@ -19,11 +19,12 @@ import numpy as np
...
@@ -19,11 +19,12 @@ import numpy as np
from
op_test
import
OpTest
from
op_test
import
OpTest
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
def
p_norm
(
x
,
axis
,
porder
,
keepdims
=
False
):
def
p_norm
(
x
,
axis
,
porder
,
keepdims
=
False
,
reduce_all
=
False
):
r
=
[]
r
=
[]
if
axis
is
None
:
if
axis
is
None
or
reduce_all
:
x
=
x
.
flatten
()
x
=
x
.
flatten
()
if
porder
==
np
.
inf
:
if
porder
==
np
.
inf
:
r
=
np
.
amax
(
np
.
abs
(
x
),
keepdims
=
keepdims
)
r
=
np
.
amax
(
np
.
abs
(
x
),
keepdims
=
keepdims
)
...
@@ -53,8 +54,8 @@ def p_norm(x, axis, porder, keepdims=False):
...
@@ -53,8 +54,8 @@ def p_norm(x, axis, porder, keepdims=False):
else
:
else
:
if
isinstance
(
axis
,
list
):
if
isinstance
(
axis
,
list
):
axis
=
tuple
(
axis
)
axis
=
tuple
(
axis
)
r
=
np
.
linalg
.
norm
(
r
=
np
.
linalg
.
norm
(
x
,
ord
=
porder
,
axis
=
axis
,
keepdims
=
keepdims
)
x
,
ord
=
porder
,
axis
=
axis
,
keepdims
=
keepdims
)
.
astype
(
x
.
dtype
)
r
=
r
.
astype
(
x
.
dtype
)
return
r
return
r
...
@@ -111,13 +112,14 @@ class TestPnormOp(OpTest):
...
@@ -111,13 +112,14 @@ class TestPnormOp(OpTest):
self
.
op_type
=
"p_norm"
self
.
op_type
=
"p_norm"
self
.
init_test_case
()
self
.
init_test_case
()
x
=
(
np
.
random
.
random
(
self
.
shape
)
+
0.5
).
astype
(
self
.
dtype
)
x
=
(
np
.
random
.
random
(
self
.
shape
)
+
0.5
).
astype
(
self
.
dtype
)
norm
=
p_norm
(
x
,
self
.
axis
,
self
.
porder
,
self
.
keepdim
)
norm
=
p_norm
(
x
,
self
.
axis
,
self
.
porder
,
self
.
keepdim
,
self
.
asvector
)
self
.
inputs
=
{
'X'
:
x
}
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
self
.
attrs
=
{
'epsilon'
:
self
.
epsilon
,
'epsilon'
:
self
.
epsilon
,
'axis'
:
self
.
axis
,
'axis'
:
self
.
axis
,
'keepdim'
:
self
.
keepdim
,
'keepdim'
:
self
.
keepdim
,
'porder'
:
float
(
self
.
porder
)
'porder'
:
float
(
self
.
porder
),
'asvector'
:
self
.
asvector
}
}
self
.
outputs
=
{
'Out'
:
norm
}
self
.
outputs
=
{
'Out'
:
norm
}
self
.
gradient
=
self
.
calc_gradient
()
self
.
gradient
=
self
.
calc_gradient
()
...
@@ -135,34 +137,42 @@ class TestPnormOp(OpTest):
...
@@ -135,34 +137,42 @@ class TestPnormOp(OpTest):
self
.
porder
=
2.0
self
.
porder
=
2.0
self
.
keepdim
=
False
self
.
keepdim
=
False
self
.
dtype
=
"float64"
self
.
dtype
=
"float64"
self
.
asvector
=
False
def
calc_gradient
(
self
):
def
calc_gradient
(
self
):
self
.
attrs
=
{
self
.
attrs
=
{
'epsilon'
:
self
.
epsilon
,
'epsilon'
:
self
.
epsilon
,
'axis'
:
self
.
axis
,
'axis'
:
self
.
axis
,
'keepdim'
:
self
.
keepdim
,
'keepdim'
:
self
.
keepdim
,
'porder'
:
float
(
self
.
porder
)
'porder'
:
float
(
self
.
porder
),
'asvector'
:
self
.
asvector
}
}
x
=
self
.
inputs
[
"X"
]
x
=
self
.
inputs
[
"X"
]
porder
=
self
.
attrs
[
"porder"
]
porder
=
self
.
attrs
[
"porder"
]
axis
=
self
.
attrs
[
"axis"
]
axis
=
self
.
attrs
[
"axis"
]
asvector
=
self
.
attrs
[
"asvector"
]
x_dtype
=
x
.
dtype
x
=
x
.
astype
(
np
.
float32
)
if
x
.
dtype
==
np
.
float16
else
x
if
porder
==
0
:
if
porder
==
0
:
grad
=
np
.
zeros
(
x
.
shape
).
astype
(
x
.
dtype
)
grad
=
np
.
zeros
(
x
.
shape
).
astype
(
x
.
dtype
)
elif
porder
in
[
float
(
"inf"
),
float
(
"-inf"
)]:
elif
porder
in
[
float
(
"inf"
),
float
(
"-inf"
)]:
norm
=
p_norm
(
x
,
axis
=
axis
,
porder
=
porder
,
keepdims
=
True
)
norm
=
p_norm
(
x
,
axis
=
axis
,
porder
=
porder
,
keepdims
=
True
,
reduce_all
=
asvector
)
x_abs
=
np
.
abs
(
x
)
x_abs
=
np
.
abs
(
x
)
grad
=
np
.
sign
(
x
)
grad
=
np
.
sign
(
x
)
grad
[
x_abs
!=
norm
]
=
0.0
grad
[
x_abs
!=
norm
]
=
0.0
else
:
else
:
norm
=
p_norm
(
x
,
axis
=
axis
,
porder
=
porder
,
keepdims
=
True
)
norm
=
p_norm
(
x
,
axis
=
axis
,
porder
=
porder
,
keepdims
=
True
,
reduce_all
=
asvector
)
grad
=
np
.
power
(
norm
,
1
-
porder
)
*
np
.
power
(
grad
=
np
.
power
(
norm
,
1
-
porder
)
*
np
.
power
(
np
.
abs
(
x
),
porder
-
1
)
*
np
.
sign
(
x
)
np
.
abs
(
x
),
porder
-
1
)
*
np
.
sign
(
x
)
numel
=
1
numel
=
1
for
s
in
x
.
shape
:
for
s
in
x
.
shape
:
numel
*=
s
numel
*=
s
numel
/=
x
.
shape
[
axis
]
divisor
=
numel
if
asvector
else
x
.
shape
[
axis
]
return
[
grad
.
astype
(
x
.
dtype
)
*
1
/
numel
]
numel
/=
divisor
return
[
grad
.
astype
(
x_dtype
)
*
1
/
numel
]
class
TestPnormOp2
(
TestPnormOp
):
class
TestPnormOp2
(
TestPnormOp
):
...
@@ -173,6 +183,7 @@ class TestPnormOp2(TestPnormOp):
...
@@ -173,6 +183,7 @@ class TestPnormOp2(TestPnormOp):
self
.
porder
=
2.0
self
.
porder
=
2.0
self
.
keepdim
=
True
self
.
keepdim
=
True
self
.
dtype
=
"float32"
self
.
dtype
=
"float32"
self
.
asvector
=
False
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
)
...
@@ -186,6 +197,7 @@ class TestPnormOp3(TestPnormOp):
...
@@ -186,6 +197,7 @@ class TestPnormOp3(TestPnormOp):
self
.
porder
=
np
.
inf
self
.
porder
=
np
.
inf
self
.
keepdim
=
True
self
.
keepdim
=
True
self
.
dtype
=
"float32"
self
.
dtype
=
"float32"
self
.
asvector
=
False
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
...
@@ -199,6 +211,7 @@ class TestPnormOp4(TestPnormOp):
...
@@ -199,6 +211,7 @@ class TestPnormOp4(TestPnormOp):
self
.
porder
=
-
np
.
inf
self
.
porder
=
-
np
.
inf
self
.
keepdim
=
True
self
.
keepdim
=
True
self
.
dtype
=
"float32"
self
.
dtype
=
"float32"
self
.
asvector
=
False
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
...
@@ -212,11 +225,63 @@ class TestPnormOp5(TestPnormOp):
...
@@ -212,11 +225,63 @@ class TestPnormOp5(TestPnormOp):
self
.
porder
=
0
self
.
porder
=
0
self
.
keepdim
=
True
self
.
keepdim
=
True
self
.
dtype
=
"float32"
self
.
dtype
=
"float32"
self
.
asvector
=
False
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
class
TestPnormOp6
(
TestPnormOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
3
,
20
,
3
]
self
.
axis
=
-
1
self
.
epsilon
=
1e-12
self
.
porder
=
2
self
.
keepdim
=
False
self
.
dtype
=
"float32"
self
.
asvector
=
True
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestPnormOpFP16
(
TestPnormOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
axis
=
1
self
.
epsilon
=
1e-12
self
.
porder
=
2.0
self
.
keepdim
=
False
self
.
dtype
=
"float16"
self
.
asvector
=
False
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
test_check_grad
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
user_defined_grads
=
self
.
gradient
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestPnormOpFP161
(
TestPnormOpFP16
):
def
init_test_case
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
axis
=
-
1
self
.
epsilon
=
1e-12
self
.
porder
=
2.0
self
.
keepdim
=
False
self
.
dtype
=
"float16"
self
.
asvector
=
True
def
run_fro
(
self
,
p
,
axis
,
shape_x
,
dtype
,
keep_dim
,
check_dim
=
False
):
def
run_fro
(
self
,
p
,
axis
,
shape_x
,
dtype
,
keep_dim
,
check_dim
=
False
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
with
fluid
.
program_guard
(
fluid
.
Program
()):
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
shape_x
,
dtype
=
dtype
)
data
=
fluid
.
data
(
name
=
"X"
,
shape
=
shape_x
,
dtype
=
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录