未验证 提交 37d281c9 编写于 作者: X xiongkun 提交者: GitHub

Set value (#34886)

* tmp

* Tile - Assign - Crop

* Finish the set value npu kernel and test case in npu

* improve the error message

* Modify according to zhangliujie

* code review
上级 8f94d349
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/set_value_op.h"
#include "paddle/fluid/operators/assign_value_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/slice_utils.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class SetValueNPUKernel : public framework::OpKernel<T> {
private:
using Vector_Int64 = std::vector<int64_t>;
void GetNPUStartEndSteps(const Vector_Int64& start, const Vector_Int64& end,
const Vector_Int64& steps, const Vector_Int64& axes,
const framework::DDim& in_dim,
std::vector<std::vector<int64_t>>& output) const {
int rank = in_dim.size();
for (int i = 0; i < rank; ++i) {
int axis_size = in_dim[i];
auto iter = find(axes.begin(), axes.end(), i);
if (iter != axes.end()) {
int idx = iter - axes.begin();
output[0].push_back(start[idx]); // set as the same as raw input
output[1].push_back(end[idx]);
output[2].push_back(steps[idx]);
} else {
output[0].push_back(0); // begin 0
output[1].push_back(axis_size); // end = last one
output[2].push_back(1); // step = 1
}
}
}
inline std::vector<int> MininumPadNumberMakeSureLastDimGT8(
const std::vector<std::vector<int64_t>>& npu_slice) const {
int rank = npu_slice[0].size();
int last_dim_start = npu_slice[0][rank - 1];
int last_dim_end = npu_slice[1][rank - 1];
int last_dim_step = npu_slice[2][rank - 1];
int min_end = last_dim_start + last_dim_step * min_last_dim_value_;
int raw_last_dim_len = (last_dim_end - last_dim_start) / last_dim_step;
return std::vector<int>({std::max(0, min_end - last_dim_end),
min_last_dim_value_ - raw_last_dim_len});
}
inline void TileTensor(const framework::ExecutionContext* ctx,
const Tensor* input, Tensor* output) const {
VLOG(4) << "start to tile tensor function, which calls the npu operator "
"TileWithAxis";
// UNSQUEEZE last dim + TILE last dim * min_last_dim_value_
Tensor reshape_tensor;
auto reshape_dims = framework::vectorize<int>(input->dims());
reshape_dims.push_back(1);
reshape_tensor.ShareDataWith(*input);
reshape_tensor.Resize(framework::make_ddim(reshape_dims));
auto output_dims = framework::vectorize<int>(input->dims());
output_dims.push_back(min_last_dim_value_);
output->mutable_data<T>(framework::make_ddim(output_dims), ctx->GetPlace());
framework::NPUAttributeMap attr;
attr["axis"] = static_cast<int>(reshape_dims.size() - 1);
attr["tiles"] = min_last_dim_value_;
auto stream =
ctx->template device_context<paddle::platform::NPUDeviceContext>()
.stream();
NpuOpRunner("TileWithAxis", {reshape_tensor}, {*output}, attr).Run(stream);
}
inline void BroadcastToD(const framework::ExecutionContext* ctx,
const Tensor* input,
const std::vector<int64_t>* shape,
Tensor* output) const {
VLOG(4) << "Start BroadCast To";
auto new_shape = std::vector<int32_t>(shape->begin(), shape->end());
output->mutable_data<T>(framework::make_ddim(new_shape), ctx->GetPlace());
framework::NPUAttributeMap attr;
attr["shape"] = new_shape;
auto stream =
ctx->template device_context<paddle::platform::NPUDeviceContext>()
.stream();
NpuOpRunner("BroadcastToD", {*input}, {*output}, attr).Run(stream);
}
inline void CropTensor(const framework::ExecutionContext* ctx,
const Tensor* input, Tensor* output) const {
auto out_dims = output->dims();
auto in_dims = input->dims();
int rank = in_dims.size();
in_dims[rank - 1] = 1;
output->Resize(in_dims); // unsqueeze output -> [..., 1]
framework::NPUAttributeMap attr;
attr["axis"] = 0;
attr["offsets"] = std::vector<int>(rank, 0);
auto stream =
ctx->template device_context<paddle::platform::NPUDeviceContext>()
.stream();
NpuOpRunner("Crop", {*input, *output}, {*output}, attr).Run(stream);
output->Resize(out_dims); // restore it
}
void SliceAssignNPU(const framework::ExecutionContext* ctx,
const Tensor* value_tensor, Vector_Int64& start,
Vector_Int64& end, Vector_Int64& steps,
Vector_Int64& axes, Tensor* assigned_tensor) const {
// must ensure assigned_tensor and value_tensor have the same shape
// not support steps < 0
// output is also the assigned_tensor.
VLOG(4) << "start function SliceAssignND";
auto stream =
ctx->template device_context<paddle::platform::NPUDeviceContext>()
.stream();
for (size_t i = 0; i < steps.size(); ++i) {
PADDLE_ENFORCE_GT(steps[i], 0,
platform::errors::InvalidArgument(
"Currently NPU set_value operator doesn't support "
"negative steps, but got %d as step",
steps[i]));
}
std::vector<std::vector<int64_t>> npu_slice(3);
GetNPUStartEndSteps(start, end, steps, axes, assigned_tensor->dims(),
npu_slice);
auto tile_numbers = MininumPadNumberMakeSureLastDimGT8(npu_slice);
int assigned_tensor_tile_number = tile_numbers[0];
int value_tensor_tile_number = tile_numbers[1];
VLOG(4) << "tile number is : " << assigned_tensor_tile_number << " "
<< value_tensor_tile_number;
Tensor tiled_assigned_tns, tiled_value_tns;
if (assigned_tensor_tile_number > 0) {
TileTensor(ctx, assigned_tensor, &tiled_assigned_tns);
TileTensor(ctx, value_tensor, &tiled_value_tns);
// output have different shape, so use a tmp variable before_crop_output;
// add last dim = min_last_dim_value_ in slice
npu_slice[0].push_back(0);
npu_slice[1].push_back(min_last_dim_value_);
npu_slice[2].push_back(1);
}
framework::NPUAttributeMap attr_input;
attr_input["begin"] =
std::vector<int>(npu_slice[0].begin(), npu_slice[0].end());
attr_input["end"] =
std::vector<int>(npu_slice[1].begin(), npu_slice[1].end());
attr_input["strides"] =
std::vector<int>(npu_slice[2].begin(), npu_slice[2].end());
attr_input["begin_mask"] = 0;
attr_input["end_mask"] = 0;
attr_input["ellipsis_mask"] = 0;
attr_input["new_axis_mask"] = 0;
attr_input["shrink_axis_mask"] = 0;
if (assigned_tensor_tile_number > 0) {
NpuOpRunner("StridedSliceAssignD", {tiled_assigned_tns, tiled_value_tns},
{tiled_assigned_tns}, attr_input)
.Run(stream); // Remember, set output = input, and this op will
// change the input value.
} else {
NpuOpRunner("StridedSliceAssignD", {*assigned_tensor, *value_tensor},
{*assigned_tensor}, attr_input)
.Run(stream);
}
if (assigned_tensor_tile_number > 0) {
CropTensor(ctx, &tiled_assigned_tns /*initialzied*/,
assigned_tensor /*initalized*/);
}
}
void ModifyAxesAccordingNoneAxes(const Vector_Int64& none_axes,
Vector_Int64& axes_to_modify) const {
if (none_axes.empty()) return;
auto none_axes_copy = none_axes;
sort(none_axes_copy.begin(), none_axes_copy.end());
for (size_t i = 0; i < axes_to_modify.size(); ++i) {
int axis = axes_to_modify[i];
auto upper =
upper_bound(none_axes_copy.begin(), none_axes_copy.end(), axis);
// Example: none_axes = [1,3,4,5,7]
// axis = 4
// find the element number less or equal than 4, which is
// 3(1,3,4)
// axis becomes 4 + 3 = 7 ;
axes_to_modify[i] = axis + (upper - none_axes_copy.begin());
}
}
void UnsqueezeAccordingNoneAxes(const Vector_Int64& none_axes,
Vector_Int64& slice_dims) const {
// note : axes will change, because new axes inserted.
// sum array to modify the axes. because more simply
if (none_axes.empty()) return;
Vector_Int64 slice_dims_with_none;
size_t none_axes_cur = 0;
for (size_t i = 0; i < slice_dims.size(); ++i) {
while (none_axes_cur < none_axes.size() &&
none_axes[none_axes_cur] <= static_cast<int>(i)) {
slice_dims_with_none.push_back(1);
none_axes_cur++;
}
slice_dims_with_none.push_back(slice_dims[i]);
}
// if the none_axes.size() > slice_dims.size(), append 1 after last dim
while (none_axes_cur < none_axes.size()) {
slice_dims_with_none.push_back(1);
none_axes_cur++;
}
slice_dims = slice_dims_with_none;
}
void ModiftyDimsAccordingNoneAndDecrease(Vector_Int64& slice_dim,
Vector_Int64& value_dim,
Vector_Int64& axes,
Vector_Int64& none_axes,
Vector_Int64& dec_axes) const {
// change the value of slice_dim, value_dim, start, end, steps, axes by none
// and decrease axes
// after change, this values can be passed to SliceAssignNPU() directly.
// Modity Slice Dim
UnsqueezeAccordingNoneAxes(none_axes, slice_dim);
ModifyAxesAccordingNoneAxes(none_axes, dec_axes);
ModifyAxesAccordingNoneAxes(none_axes, axes);
// Modity Value Dim by new slice dim
auto slice_dim_reverse = slice_dim;
auto value_dim_reverse = value_dim;
std::reverse(slice_dim_reverse.begin(), slice_dim_reverse.end());
std::reverse(value_dim_reverse.begin(), value_dim_reverse.end());
Vector_Int64 new_value_dim;
PADDLE_ENFORCE_GE(
slice_dim.size(), value_dim.size(),
platform::errors::InvalidArgument("The size of expanded slice_dim(%d) "
"must greater than the value_dim(%d)",
slice_dim.size(), value_dim.size()));
size_t value_cur = 0;
size_t rank = slice_dim.size();
for (size_t i = 0; i < rank; ++i) {
auto& xsize = slice_dim_reverse[i];
if (value_cur >= value_dim_reverse.size()) {
new_value_dim.push_back(1);
continue;
}
auto& vsize = value_dim_reverse[value_cur];
auto it = find(dec_axes.begin(), dec_axes.end(), rank - 1 - i);
if (it != dec_axes.end()) {
// found, insert one dim ;
PADDLE_ENFORCE_EQ(xsize, 1, platform::errors::InvalidArgument(
"The dims refered by decrease axes is "
"not equal to 1, some wrongs happen"));
new_value_dim.push_back(1);
continue;
}
if (xsize == vsize || vsize == 1) {
new_value_dim.push_back(vsize);
++value_cur;
continue;
}
PADDLE_THROW(platform::errors::InvalidArgument(
"The shape of value_tensor can't be broadcast to value tensor, "
"please check input"));
}
for (; value_cur < value_dim_reverse.size(); ++value_cur) {
if (value_dim_reverse[value_cur] != 1) {
PADDLE_THROW(platform::errors::InvalidArgument(
"The shape of value_tensor can't be broadcast to value tensor, "
"please check input"));
}
}
std::reverse(new_value_dim.begin(), new_value_dim.end());
value_dim = new_value_dim;
return;
}
public:
void Compute(const framework::ExecutionContext& ctx) const override {
VLOG(2) << "Start Set Value Npu Kernel";
auto* in = ctx.Input<framework::LoDTensor>("Input");
auto* out = ctx.Output<framework::LoDTensor>("Out");
auto* value_tensor = ctx.Input<framework::LoDTensor>("ValueTensor");
auto starts_tensor_list =
ctx.MultiInput<framework::Tensor>("StartsTensorList");
auto ends_tensor_list = ctx.MultiInput<framework::Tensor>("EndsTensorList");
auto steps_tensor_list =
ctx.MultiInput<framework::Tensor>("StepsTensorList");
auto axes = ctx.Attr<std::vector<int64_t>>("axes");
auto starts = ctx.Attr<std::vector<int64_t>>("starts");
auto ends = ctx.Attr<std::vector<int64_t>>("ends");
auto steps = ctx.Attr<std::vector<int64_t>>("steps");
auto shape = ctx.Attr<std::vector<int64_t>>("shape");
auto decrease_axes = ctx.Attr<std::vector<int64_t>>("decrease_axes");
auto none_axes = ctx.Attr<std::vector<int64_t>>("none_axes");
auto dtype = in->type();
if (dtype == framework::proto::VarType::FP64 ||
dtype == framework::proto::VarType::INT64 ||
dtype == framework::proto::VarType::BOOL) {
auto value_type_name = GetValueName(dtype);
PADDLE_THROW(platform::errors::InvalidArgument(
"The NPU setvalue kernel currently only support FLOAT32 and INT32, "
"but got type: %s",
value_type_name.data()));
}
if (!starts_tensor_list.empty()) {
starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
}
if (!ends_tensor_list.empty()) {
ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
}
if (!steps_tensor_list.empty()) {
steps = GetDataFromTensorList<int64_t>(steps_tensor_list);
}
auto in_dims = in->dims();
CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends, &steps);
auto slice_dims = GetSliceDims(in_dims, axes, starts, ends, &steps);
auto place = ctx.GetPlace();
// aforementioned code is copyed directly from CPU kernel.
// (@xiongkun03) the following is redesigned by xiongkun. because NPU can do
// step slice assignment. so we deal with all none_axes and decrease_axes
// here.
// 1. we insert 1 into assigned_tensor_shape according to none_axes;
// 2. we insert 1 into value_tensor_shape(value tensor) according to
// decrease_axes;
// 3. we reshape back the assigned_tensor. and return it.
// note : we use a tmp_value_tensor as value_tns. it shares data with
// value_tensor;
// I believe the logic is more simple than cpu logic.
TensorCopy(*in, place, out);
Tensor value_t(dtype);
if (value_tensor == nullptr) {
auto value_dims = framework::make_ddim(shape);
value_t.mutable_data<T>(value_dims, place);
auto value_name = GetValueName(dtype);
CopyVecotorToTensor<T>(value_name.c_str(), &value_t, ctx);
value_t.Resize(value_dims);
}
const Tensor* value_tensor_ptr =
(value_tensor == nullptr) ? &value_t : value_tensor;
auto value_dims_vec = framework::vectorize(value_tensor_ptr->dims());
auto slice_dims_vec = framework::vectorize(slice_dims);
auto in_dims_vec = framework::vectorize(in_dims);
UnsqueezeAccordingNoneAxes(none_axes, in_dims_vec);
ModiftyDimsAccordingNoneAndDecrease(slice_dims_vec, value_dims_vec, axes,
none_axes,
decrease_axes); // Modify and Check
Tensor reshaped_value_tensor, broadcast_value_tensor;
reshaped_value_tensor.ShareDataWith(*value_tensor_ptr);
reshaped_value_tensor.Resize(framework::make_ddim(value_dims_vec));
BroadcastToD(&ctx, &reshaped_value_tensor, &slice_dims_vec,
&broadcast_value_tensor /*inner function initialized*/);
out->Resize(framework::make_ddim(in_dims_vec));
SliceAssignNPU(&ctx, &broadcast_value_tensor, starts, ends, steps, axes,
out);
out->Resize(in_dims); // Reshape Back
}
private:
const int min_last_dim_value_ =
32 / sizeof(T); // 16 for float16 , 8 for float32
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
set_value, ops::SetValueNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::SetValueNPUKernel<paddle::platform::NPUDeviceContext, float>)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
SEED = 2021
class TestSetValueBase(unittest.TestCase):
def set_input(self):
self.set_npu()
paddle.device.set_device('npu')
self.set_dtype()
self.set_value()
self.set_shape()
self.data = np.ones(self.shape).astype(self.dtype)
self.program = paddle.static.Program()
def set_shape(self):
self.shape = [2, 3, 4]
def set_value(self):
self.value = 6
def set_dtype(self):
self.dtype = "float32"
def _call_setitem(self, x):
x[0, 0] = self.value
def _get_answer(self):
self.data[0, 0] = self.value
def set_npu(self):
self.__class__.use_npu = True
class TestSetValueApi(TestSetValueBase):
def _run_static(self):
paddle.enable_static()
with paddle.static.program_guard(self.program):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
self._call_setitem(x)
exe = paddle.static.Executor(paddle.NPUPlace(0))
out = exe.run(self.program, fetch_list=[x])
paddle.disable_static()
return out
def _run_dynamic(self):
paddle.disable_static()
x = paddle.ones(shape=self.shape, dtype=self.dtype)
self._call_setitem(x)
out = x.numpy()
paddle.enable_static()
return out
def test_api(self):
self.set_input()
static_out = self._run_static()
dynamic_out = self._run_dynamic()
self._get_answer()
error_msg = "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
self.assertTrue(
(self.data == static_out).all(),
msg=error_msg.format("static", self.data, static_out))
self.assertTrue(
(self.data == dynamic_out).all(),
msg=error_msg.format("dynamic", self.data, dynamic_out))
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
class TestSetValueItemInt(TestSetValueApi):
def _call_setitem(self, x):
x[0] = self.value
def _get_answer(self):
self.data[0] = self.value
# 1.2 item is slice
# 1.2.1 step is 1
class TestSetValueItemSlice(TestSetValueApi):
def _call_setitem(self, x):
x[0:2] = self.value
def _get_answer(self):
self.data[0:2] = self.value
class TestSetValueItemSlice2(TestSetValueApi):
def _call_setitem(self, x):
x[0:-1] = self.value
def _get_answer(self):
self.data[0:-1] = self.value
class TestSetValueItemSlice3(TestSetValueApi):
def _call_setitem(self, x):
x[0:-1, 0:2] = self.value
def _get_answer(self):
self.data[0:-1, 0:2] = self.value
class TestSetValueItemSlice4(TestSetValueApi):
def _call_setitem(self, x):
x[0:, 1:2, :] = self.value
def _get_answer(self):
self.data[0:, 1:2, :] = self.value
""" FIXEME : it seams that NPU don't support while operator ???
class TestSetValueItemSliceInWhile(TestSetValueApi):
def _call_setitem(self, x):
def cond(i, x):
return i < 1
def body(i, x):
x[i] = self.value
i = i + 1
return i, x
with paddle.static.device_guard("npu"):
i = paddle.zeros(shape=(1, ), dtype='int32')
i, x = paddle.fluid.layers.while_loop(cond, body, [i, x])
def _get_answer(self):
self.data[0] = self.value
"""
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
def set_shape(self):
self.shape = [5, 5, 5]
def _call_setitem(self, x):
x[0:2:2] = self.value
def _get_answer(self):
self.data[0:2:2] = self.value
class TestSetValueItemSliceStep2(TestSetValueApi):
def set_shape(self):
self.shape = [7, 5, 5]
def _call_setitem(self, x):
x[0:-1:3] = self.value
def _get_answer(self):
self.data[0:-1:3] = self.value
class TestSetValueItemSliceStep3(TestSetValueApi):
def _call_setitem(self, x):
x[0:-1, 0:2, ::2] = self.value
def _get_answer(self):
self.data[0:-1, 0:2, ::2] = self.value
class TestSetValueItemSliceStep4(TestSetValueApi):
def _call_setitem(self, x):
x[0:, 1:2:2, :] = self.value
def _get_answer(self):
self.data[0:, 1:2:2, :] = self.value
# 1.3 item is Ellipsis
class TestSetValueItemEllipsis1(TestSetValueApi):
def _call_setitem(self, x):
x[0:, ..., 1:] = self.value
def _get_answer(self):
self.data[0:, ..., 1:] = self.value
class TestSetValueItemEllipsis2(TestSetValueApi):
def _call_setitem(self, x):
x[0:, ...] = self.value
def _get_answer(self):
self.data[0:, ...] = self.value
class TestSetValueItemEllipsis3(TestSetValueApi):
def _call_setitem(self, x):
x[..., 1:] = self.value
def _get_answer(self):
self.data[..., 1:] = self.value
class TestSetValueItemEllipsis4(TestSetValueApi):
def _call_setitem(self, x):
x[...] = self.value
def _get_answer(self):
self.data[...] = self.value
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
def _call_setitem(self, x):
zero = paddle.full([1], 0, dtype="int32")
x[zero] = self.value
def _get_answer(self):
self.data[0] = self.value
class TestSetValueItemTensor2(TestSetValueApi):
def _call_setitem(self, x):
zero = paddle.full([1], 0, dtype="int32")
two = paddle.full([1], 2, dtype="int64")
x[zero:two] = self.value
def _get_answer(self):
self.data[0:2] = self.value
class TestSetValueItemTensor3(TestSetValueApi):
def _call_setitem(self, x):
zero = paddle.full([1], 0, dtype="int32")
two = paddle.full([1], 2, dtype="int64")
x[zero:-1, 0:two] = self.value
def _get_answer(self):
self.data[0:-1, 0:2] = self.value
class TestSetValueItemTensor4(TestSetValueApi):
def _call_setitem(self, x):
zero = paddle.full([1], 0, dtype="int32")
two = paddle.full([1], 2, dtype="int64")
x[0:-1, zero:2, 0:6:two] = self.value
def _get_answer(self):
self.data[0:-1, 0:2, ::2] = self.value
class TestSetValueItemTensor5(TestSetValueApi):
def _call_setitem(self, x):
zero = paddle.full([1], 0, dtype="int32")
two = paddle.full([1], 2, dtype="int64")
x[zero:, 1:2:two, :] = self.value
def _get_answer(self):
self.data[0:, 1:2:2, :] = self.value
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
def _call_setitem(self, x):
x[None] = self.value
def _get_answer(self):
self.data[None] = self.value
class TestSetValueItemNone2(TestSetValueApi):
def _call_setitem(self, x):
x[0, None, 1] = self.value
def _get_answer(self):
self.data[0, None, 1] = self.value
class TestSetValueItemNone3(TestSetValueApi):
def _call_setitem(self, x):
x[:, None, None, 1] = self.value
def _get_answer(self):
self.data[:, None, None, 1] = self.value
class TestSetValueItemNone4(TestSetValueApi):
def _call_setitem(self, x):
x[0, 0, None, 1] = self.value
def _get_answer(self):
self.data[0, 0, None, 1] = self.value
class TestSetValueItemNone5(TestSetValueApi):
def _call_setitem(self, x):
x[0, None, 0, None, 1] = self.value
def _get_answer(self):
self.data[0, None, 0, None, 1] = self.value
class TestSetValueItemNone6(TestSetValueApi):
def _call_setitem(self, x):
x[None, 0, 0, None, 0] = self.value
def _get_answer(self):
self.data[None, 0, 0, None, 0] = self.value
class TestSetValueItemNone7(TestSetValueApi):
def _call_setitem(self, x):
x[:, None, 1] = np.zeros(self.shape)[:, None, 0]
def _get_answer(self):
self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]
class TestSetValueItemNone8(TestSetValueApi):
def _call_setitem(self, x):
x[:, 1, None] = np.zeros(self.shape)[:, 0, None]
def _get_answer(self):
self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]
class TestSetValueItemNone9(TestSetValueApi):
def _call_setitem(self, x):
x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]
def _get_answer(self):
self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]
""" FIXME : current NPU set_value don't support negative step !!!
@xiongkun03
class TestSetValueItemTensor6(TestSetValueApi):
def set_shape(self):
self.shape = [3, 4, 5]
def _call_setitem(self, x):
minus1 = paddle.full([1], -1, dtype="int32")
zero = paddle.full([1], 0, dtype="int32")
x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value
def _get_answer(self):
self.data[2:0:-1, 0:2, ::-1] = self.value
"""
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
# 2.1 value is int32, int64, float32, float64, bool
def create_test_value_int32(parent):
class TestValueInt(parent):
def set_value(self):
self.value = 7
def set_dtype(self):
self.dtype = "int32"
cls_name = "{0}_{1}".format(parent.__name__, "ValueInt32")
TestValueInt.__name__ = cls_name
globals()[cls_name] = TestValueInt
create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)
def create_test_value_numpy_fp32(parent):
class TestValueInt(parent):
def set_value(self):
self.value = np.array([1])
def set_dtype(self):
self.dtype = "float32"
cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp32")
TestValueInt.__name__ = cls_name
globals()[cls_name] = TestValueInt
create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)
def create_test_value_numpy_fp64(parent):
class TestValueInt(parent):
def set_value(self):
self.value = np.array([2**127]).astype("float64")
def set_dtype(self):
self.dtype = "float64"
cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp64")
TestValueInt.__name__ = cls_name
globals()[cls_name] = TestValueInt
create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)
# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
class TestValueInt(parent):
def set_dtype(self):
self.dtype = "int32"
def _call_setitem(self, x):
value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
x[0, 1] = value
def _get_answer(self):
self.data[0, 1] = 3
cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt32")
TestValueInt.__name__ = cls_name
globals()[cls_name] = TestValueInt
create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)
def create_test_value_tensor_int64(parent):
class TestValueInt(parent):
def set_dtype(self):
self.dtype = "int64"
def _call_setitem(self, x):
value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
x[0, 1] = value
def _get_answer(self):
self.data[0, 1] = 3
cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt64")
TestValueInt.__name__ = cls_name
globals()[cls_name] = TestValueInt
create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)
def create_test_value_tensor_fp32(parent):
class TestValueInt(parent):
def set_dtype(self):
self.dtype = "float32"
def _call_setitem(self, x):
value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
x[0, 1] = value
def _get_answer(self):
self.data[0, 1] = 3
cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp32")
TestValueInt.__name__ = cls_name
globals()[cls_name] = TestValueInt
create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)
def create_test_value_tensor_fp64(parent):
class TestValueInt(parent):
def set_dtype(self):
self.dtype = "float64"
def _call_setitem(self, x):
value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
x[0, 1] = value
def _get_answer(self):
self.data[0, 1] = 3
cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp64")
TestValueInt.__name__ = cls_name
globals()[cls_name] = TestValueInt
create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)
# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
def set_value(self):
self.value = np.array([3, 4, 5, 6]) # shape is (4,)
def _call_setitem(self, x):
x[0] = self.value
def _get_answer(self):
self.data[0] = self.value
class TestSetValueValueShape2(TestSetValueApi):
def set_value(self):
self.value = np.array([[3, 4, 5, 6]]) # shape is (1,4)
def _call_setitem(self, x):
x[0:1] = self.value
def _get_answer(self):
self.data[0:1] = self.value
class TestSetValueValueShape3(TestSetValueApi):
def set_value(self):
self.value = np.array(
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]) # shape is (3,4)
def _call_setitem(self, x):
x[0] = self.value
def _get_answer(self):
self.data[0] = self.value
class TestSetValueValueShape4(TestSetValueApi):
def set_value(self):
self.value = np.array(
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]).astype(
self.dtype) # shape is (3,4)
def _call_setitem(self, x):
x[0] = paddle.assign(self.value) # x is Paddle.Tensor
def _get_answer(self):
self.data[0] = self.value
class TestSetValueValueShape5(TestSetValueApi):
def set_value(self):
self.value = np.array([3, 3, 3]).astype(self.dtype)
def set_shape(self):
self.shape = [3, 4]
def _call_setitem(self, x):
x[:, 0] = paddle.assign(self.value) # x is Paddle.Tensor
def _get_answer(self):
self.data[:, 0] = self.value
# 4. Test error
class TestError(TestSetValueBase):
def _value_type_error(self):
with self.assertRaisesRegexp(
TypeError,
"Only support to assign an integer, float, numpy.ndarray or paddle.Tensor"
):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
value = [1]
x[0] = value
def _dtype_error(self):
with self.assertRaisesRegexp(
TypeError,
"When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
):
y = paddle.ones(shape=self.shape, dtype="float16")
y[0] = 1
def _step_error(self):
with self.assertRaisesRegexp(ValueError, "step can not be 0"):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
x[0:1:0] = self.value
def _ellipsis_error(self):
with self.assertRaisesRegexp(
IndexError, "An index can only have a single ellipsis"):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
x[..., ...] = self.value
with self.assertRaisesRegexp(ValueError, "the start or end is None"):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
one = paddle.ones([1])
x[::one] = self.value
def _broadcast_mismatch(self):
program = paddle.static.Program()
with paddle.static.program_guard(program):
x = paddle.ones(shape=self.shape, dtype=self.dtype)
value = np.array([3, 4, 5, 6, 7])
x[0] = value
exe = paddle.static.Executor(paddle.CPUPlace())
with self.assertRaises(ValueError):
exe.run(program)
def test_error(self):
self.set_input()
paddle.enable_static()
with paddle.static.program_guard(self.program):
self._value_type_error()
self._dtype_error()
self._step_error()
self._broadcast_mismatch()
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册