未验证 提交 36027490 编写于 作者: C Chen Weihang 提交者: GitHub

Verify correctness of jit.save/jit.load - part 1 (#25915)

上级 82374dc1
......@@ -18,6 +18,7 @@ import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph.dygraph_to_static import ProgramTranslator
from paddle.fluid.dygraph.io import VARIABLE_FILENAME
from bert_dygraph_model import PretrainModelLayer
from bert_utils import get_bert_config, get_feed_data_reader
......@@ -28,9 +29,11 @@ place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace(
SEED = 2020
STEP_NUM = 10
PRINT_STEP = 2
MODEL_SAVE_PATH = "./bert.inference.model"
DY_STATE_DICT_SAVE_PATH = "./bert.dygraph"
def train(bert_config, data_reader):
def train(bert_config, data_reader, to_static):
with fluid.dygraph.guard(place):
fluid.default_main_program().random_seed = SEED
fluid.default_startup_program().random_seed = SEED
......@@ -79,18 +82,74 @@ def train(bert_config, data_reader):
step_idx += 1
if step_idx == STEP_NUM:
if to_static:
fluid.dygraph.jit.save(bert, MODEL_SAVE_PATH)
else:
fluid.dygraph.save_dygraph(bert.state_dict(),
DY_STATE_DICT_SAVE_PATH)
break
return loss, ppl
def train_dygraph(bert_config, data_reader):
program_translator.enable(False)
return train(bert_config, data_reader)
return train(bert_config, data_reader, False)
def train_static(bert_config, data_reader):
program_translator.enable(True)
return train(bert_config, data_reader)
return train(bert_config, data_reader, True)
def predict_static(data):
exe = fluid.Executor(place)
# load inference model
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
MODEL_SAVE_PATH, executor=exe, params_filename=VARIABLE_FILENAME)
pred_res = exe.run(inference_program,
feed=dict(zip(feed_target_names, data)),
fetch_list=fetch_targets)
return pred_res
def predict_dygraph(bert_config, data):
program_translator.enable(False)
with fluid.dygraph.guard(place):
bert = PretrainModelLayer(
config=bert_config, weight_sharing=False, use_fp16=False)
model_dict, _ = fluid.dygraph.load_dygraph(DY_STATE_DICT_SAVE_PATH)
bert.set_dict(model_dict)
bert.eval()
input_vars = [fluid.dygraph.to_variable(x) for x in data]
src_ids, pos_ids, sent_ids, input_mask, mask_label, mask_pos, labels = input_vars
pred_res = bert(
src_ids=src_ids,
position_ids=pos_ids,
sentence_ids=sent_ids,
input_mask=input_mask,
mask_label=mask_label,
mask_pos=mask_pos,
labels=labels)
pred_res = [var.numpy() for var in pred_res]
return pred_res
def predict_dygraph_jit(data):
with fluid.dygraph.guard(place):
bert = fluid.dygraph.jit.load(MODEL_SAVE_PATH)
bert.eval()
src_ids, pos_ids, sent_ids, input_mask, mask_label, mask_pos, labels = data
pred_res = bert(src_ids, pos_ids, sent_ids, input_mask, mask_label,
mask_pos, labels)
pred_res = [var.numpy() for var in pred_res]
return pred_res
class TestBert(unittest.TestCase):
......@@ -104,14 +163,36 @@ class TestBert(unittest.TestCase):
dygraph_loss, dygraph_ppl = train_dygraph(self.bert_config,
self.data_reader)
self.assertTrue(
np.allclose(static_loss, static_loss),
msg="static_loss: {} \n static_loss: {}".format(static_loss,
dygraph_loss))
np.allclose(static_loss, dygraph_loss),
msg="static_loss: {} \n dygraph_loss: {}".format(static_loss,
dygraph_loss))
self.assertTrue(
np.allclose(static_ppl, dygraph_ppl),
msg="static_ppl: {} \n dygraph_ppl: {}".format(static_ppl,
dygraph_ppl))
self.verify_predict()
def verify_predict(self):
for data in self.data_reader.data_generator()():
dygraph_pred_res = predict_dygraph(self.bert_config, data)
static_pred_res = predict_static(data)
dygraph_jit_pred_res = predict_dygraph_jit(data)
for dy_res, st_res, dy_jit_res in zip(
dygraph_pred_res, static_pred_res, dygraph_jit_pred_res):
self.assertTrue(
np.allclose(st_res, dy_res),
"dygraph_res: {},\n static_res: {}".format(
dy_res[~np.isclose(st_res, dy_res)],
st_res[~np.isclose(st_res, dy_res)]))
self.assertTrue(
np.allclose(st_res, dy_jit_res),
"dygraph_jit_res: {},\n static_res: {}".format(
dy_jit_res[~np.isclose(st_res, dy_jit_res)],
st_res[~np.isclose(st_res, dy_jit_res)]))
break
if __name__ == '__main__':
unittest.main()
......@@ -692,13 +692,20 @@ class TestTrain(unittest.TestCase):
video_data = np.array([item[0] for item in data]).astype(DATATYPE)
static_pred_res = self.predict_static(video_data)
dygraph_pred_res = self.predict_dygraph(video_data)
dygraph_jit_pred_res = self.predict_dygraph_jit(video_data)
for dy_res, st_res in zip(dygraph_pred_res, static_pred_res):
for dy_res, st_res, dy_jit_res in zip(
dygraph_pred_res, static_pred_res, dygraph_jit_pred_res):
self.assertTrue(
np.allclose(st_res, dy_res),
"dygraph_res: {},\n static_res: {}".format(
dy_res[~np.isclose(st_res, dy_res)],
st_res[~np.isclose(st_res, dy_res)]))
self.assertTrue(
np.allclose(st_res, dy_jit_res),
"dygraph_jit_res: {},\n static_res: {}".format(
dy_jit_res[~np.isclose(st_res, dy_jit_res)],
st_res[~np.isclose(st_res, dy_jit_res)]))
break
def predict_dygraph(self, data):
......@@ -731,6 +738,17 @@ class TestTrain(unittest.TestCase):
return pred_res
def predict_dygraph_jit(self, data):
with fluid.dygraph.guard(self.place):
bmn = fluid.dygraph.jit.load(self.args.infer_dir)
bmn.eval()
x = to_variable(data)
pred_res = bmn(x)
pred_res = [var.numpy() for var in pred_res]
return pred_res
if __name__ == "__main__":
unittest.main()
......@@ -535,9 +535,14 @@ class TestLACModel(unittest.TestCase):
batch = [np.vstack(var) for var in zip(*batch)]
dy_pre = self.predict_dygraph(batch)
st_pre = self.predict_static(batch)
dy_jit_pre = self.predict_dygraph_jit(batch)
self.assertTrue(
np.allclose(dy_pre, st_pre),
msg="dy_pre:\n {}\n, st_pre: \n{}.".format(dy_pre, st_pre))
self.assertTrue(
np.allclose(dy_jit_pre, st_pre),
msg="dy_jit_pre:\n {}\n, st_pre: \n{}.".format(dy_jit_pre,
st_pre))
def predict_dygraph(self, batch):
words, targets, length = batch
......@@ -576,6 +581,16 @@ class TestLACModel(unittest.TestCase):
fetch_list=fetch_targets)
return pred_res[0]
def predict_dygraph_jit(self, batch):
words, targets, length = batch
with fluid.dygraph.guard(self.place):
model = fluid.dygraph.jit.load(self.args.model_save_dir)
model.eval()
pred_res = model(to_variable(words), to_variable(length))
return pred_res.numpy()
if __name__ == "__main__":
unittest.main()
......@@ -19,6 +19,7 @@ from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph import declarative, ProgramTranslator
from paddle.fluid.dygraph.io import VARIABLE_FILENAME
import unittest
......@@ -433,14 +434,15 @@ class Args(object):
class_dim = 50
print_step = 1
train_step = 10
place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
) else fluid.CPUPlace()
model_save_path = model + ".inference.model"
dy_state_dict_save_path = model + ".dygraph"
def train_mobilenet(args, to_static):
program_translator.enable(to_static)
place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.dygraph.guard(place):
with fluid.dygraph.guard(args.place):
np.random.seed(SEED)
fluid.default_startup_program().random_seed = SEED
......@@ -461,7 +463,7 @@ def train_mobilenet(args, to_static):
# 3. reader
train_reader = fake_data_reader(args.batch_size, args.class_dim)
train_data_loader = fluid.io.DataLoader.from_generator(capacity=16)
train_data_loader.set_sample_list_generator(train_reader, place)
train_data_loader.set_sample_list_generator(train_reader)
# 4. train loop
loss_data = []
......@@ -498,17 +500,64 @@ def train_mobilenet(args, to_static):
batch_id += 1
t_last = time.time()
if batch_id > args.train_step:
if to_static:
fluid.dygraph.jit.save(net, args.model_save_path)
else:
fluid.dygraph.save_dygraph(net.state_dict(),
args.dy_state_dict_save_path)
break
return np.array(loss_data)
def predict_static(args, data):
exe = fluid.Executor(args.place)
# load inference model
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
args.model_save_path, executor=exe, params_filename=VARIABLE_FILENAME)
pred_res = exe.run(inference_program,
feed={feed_target_names[0]: data},
fetch_list=fetch_targets)
return pred_res[0]
def predict_dygraph(args, data):
program_translator.enable(False)
with fluid.dygraph.guard(args.place):
if args.model == "MobileNetV1":
model = MobileNetV1(class_dim=args.class_dim, scale=1.0)
elif args.model == "MobileNetV2":
model = MobileNetV2(class_dim=args.class_dim, scale=1.0)
# load dygraph trained parameters
model_dict, _ = fluid.load_dygraph(args.dy_state_dict_save_path)
model.set_dict(model_dict)
model.eval()
pred_res = model(fluid.dygraph.to_variable(data))
return pred_res.numpy()
def predict_dygraph_jit(args, data):
with fluid.dygraph.guard(args.place):
model = fluid.dygraph.jit.load(args.model_save_path)
model.eval()
pred_res = model(data)
return pred_res.numpy()
class TestMobileNet(unittest.TestCase):
def setUp(self):
self.args = Args()
def train(self, model_name, to_static):
self.args.model = model_name
self.args.model_save_path = model_name + ".inference.model"
self.args.dy_state_dict_save_path = model_name + ".dygraph"
out = train_mobilenet(self.args, to_static)
return out
......@@ -519,12 +568,36 @@ class TestMobileNet(unittest.TestCase):
np.allclose(dy_out, st_out),
msg="dy_out: {}, st_out: {}".format(dy_out, st_out))
def test_mobileNet(self):
def assert_same_predict(self, model_name):
self.args.model = model_name
self.args.model_save_path = model_name + ".inference.model"
self.args.dy_state_dict_save_path = model_name + ".dygraph"
local_random = np.random.RandomState(SEED)
image = local_random.random_sample([1, 3, 224, 224]).astype('float32')
dy_pre = predict_dygraph(self.args, image)
st_pre = predict_static(self.args, image)
dy_jit_pre = predict_dygraph_jit(self.args, image)
self.assertTrue(
np.allclose(dy_pre, st_pre),
msg="dy_pre:\n {}\n, st_pre: \n{}.".format(dy_pre, st_pre))
self.assertTrue(
np.allclose(dy_jit_pre, st_pre),
msg="dy_jit_pre:\n {}\n, st_pre: \n{}.".format(dy_jit_pre, st_pre))
def test_mobile_net(self):
# MobileNet-V1
self.assert_same_loss("MobileNetV1")
# MobileNet-V2
self.assert_same_loss("MobileNetV2")
self.verify_predict()
def verify_predict(self):
# MobileNet-V1
self.assert_same_predict("MobileNetV1")
# MobileNet-V2
self.assert_same_predict("MobileNetV2")
if __name__ == '__main__':
unittest.main()
......@@ -22,39 +22,33 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.jit import dygraph_to_static_func
from paddle.fluid.dygraph import declarative, ProgramTranslator
from paddle.fluid.dygraph.nn import BatchNorm, Conv2D, Linear, Pool2D
from paddle.fluid.dygraph.io import VARIABLE_FILENAME
SEED = 2020
IMAGENET1000 = 1281167
base_lr = 0.1
base_lr = 0.001
momentum_rate = 0.9
l2_decay = 1e-4
batch_size = 8
epoch_num = 1
place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() \
else fluid.CPUPlace()
MODEL_SAVE_PATH = "./resnet.inference.model"
DY_STATE_DICT_SAVE_PATH = "./resnet.dygraph"
program_translator = ProgramTranslator()
if fluid.is_compiled_with_cuda():
fluid.set_flags({'FLAGS_cudnn_deterministic': True})
def optimizer_setting(parameter_list=None):
total_images = IMAGENET1000
step = int(math.ceil(float(total_images) / batch_size))
epochs = [30, 60, 90]
bd = [step * e for e in epochs]
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
if fluid.in_dygraph_mode():
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay),
parameter_list=parameter_list)
else:
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay))
optimizer = fluid.optimizer.Momentum(
learning_rate=base_lr,
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay),
parameter_list=parameter_list)
return optimizer
......@@ -189,8 +183,8 @@ class ResNet(fluid.dygraph.Layer):
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
@dygraph_to_static_func
def forward(self, inputs, label):
@declarative
def forward(self, inputs):
y = self.conv(inputs)
y = self.pool2d_max(y)
for bottleneck_block in self.bottleneck_block_list:
......@@ -199,77 +193,144 @@ class ResNet(fluid.dygraph.Layer):
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
pred = self.out(y)
loss = fluid.layers.cross_entropy(input=pred, label=label)
avg_loss_ = fluid.layers.mean(x=loss)
acc_top1_ = fluid.layers.accuracy(input=pred, label=label, k=1)
acc_top5_ = fluid.layers.accuracy(input=pred, label=label, k=5)
return pred
return pred, avg_loss_, acc_top1_, acc_top5_
def reader_decorator(reader):
def __reader__():
for item in reader():
img = np.array(item[0]).astype('float32').reshape(3, 224, 224)
label = np.array(item[1]).astype('int64').reshape(1)
yield img, label
return __reader__
def train_resnet_in_static_mode():
def train(to_static):
"""
Tests model decorated by `dygraph_to_static_output` in static mode. For users, the model is defined in dygraph mode and trained in static mode.
"""
with fluid.dygraph.guard(place):
np.random.seed(SEED)
fluid.default_startup_program().random_seed = SEED
fluid.default_main_program().random_seed = SEED
train_reader = paddle.batch(
reader_decorator(paddle.dataset.flowers.train(use_xmap=False)),
batch_size=batch_size,
drop_last=True)
data_loader = fluid.io.DataLoader.from_generator(
capacity=5, iterable=True)
data_loader.set_sample_list_generator(train_reader)
resnet = ResNet()
optimizer = optimizer_setting(parameter_list=resnet.parameters())
for epoch in range(epoch_num):
total_loss = 0.0
total_acc1 = 0.0
total_acc5 = 0.0
total_sample = 0
for batch_id, data in enumerate(data_loader()):
start_time = time.time()
img, label = data
pred = resnet(img)
loss = fluid.layers.cross_entropy(input=pred, label=label)
avg_loss = fluid.layers.mean(x=loss)
acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
avg_loss.backward()
optimizer.minimize(avg_loss)
resnet.clear_gradients()
total_loss += avg_loss
total_acc1 += acc_top1
total_acc5 += acc_top5
total_sample += 1
end_time = time.time()
if batch_id % 2 == 0:
print( "epoch %d | batch step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, time %f" % \
( epoch, batch_id, total_loss.numpy() / total_sample, \
total_acc1.numpy() / total_sample, total_acc5.numpy() / total_sample, end_time-start_time))
if batch_id == 10:
if to_static:
fluid.dygraph.jit.save(resnet, MODEL_SAVE_PATH)
else:
fluid.dygraph.save_dygraph(resnet.state_dict(),
DY_STATE_DICT_SAVE_PATH)
# avoid dataloader throw abort signaal
data_loader._reset()
break
return total_loss.numpy()
def predict_dygraph(data):
program_translator.enable(False)
with fluid.dygraph.guard(place):
resnet = ResNet()
model_dict, _ = fluid.dygraph.load_dygraph(DY_STATE_DICT_SAVE_PATH)
resnet.set_dict(model_dict)
resnet.eval()
pred_res = resnet(fluid.dygraph.to_variable(data))
return pred_res.numpy()
def predict_static(data):
exe = fluid.Executor(place)
startup_prog = fluid.Program()
main_prog = fluid.Program()
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
MODEL_SAVE_PATH, executor=exe, params_filename=VARIABLE_FILENAME)
with fluid.program_guard(main_prog, startup_prog):
pred_res = exe.run(inference_program,
feed={feed_target_names[0]: data},
fetch_list=fetch_targets)
img = fluid.data(name="img", shape=[None, 3, 224, 224], dtype="float32")
label = fluid.data(name="label", shape=[None, 1], dtype="int64")
label.stop_gradient = True
resnet = ResNet()
pred, avg_loss_, acc_top1_, acc_top5_ = resnet(img, label)
optimizer = optimizer_setting(parameter_list=resnet.parameters())
optimizer.minimize(avg_loss_)
exe.run(startup_prog)
train_reader = paddle.batch(
paddle.dataset.flowers.train(use_xmap=False), batch_size=batch_size)
for epoch in range(epoch_num):
total_loss = 0.0
total_acc1 = 0.0
total_acc5 = 0.0
total_sample = 0
for batch_id, data in enumerate(train_reader()):
start_time = time.time()
dy_x_data = np.array(
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
if len(np.array([x[1]
for x in data]).astype('int64')) != batch_size:
continue
y_data = np.array([x[1] for x in data]).astype('int64').reshape(-1,
1)
avg_loss, acc_top1, acc_top5 = exe.run(
main_prog,
feed={"img": dy_x_data,
"label": y_data},
fetch_list=[avg_loss_, acc_top1_, acc_top5_])
total_loss += avg_loss
total_acc1 += acc_top1
total_acc5 += acc_top5
total_sample += 1
end_time = time.time()
if batch_id % 2 == 0:
print( "epoch %d | batch step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, time %f" % \
( epoch, batch_id, total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample, end_time-start_time))
if batch_id == 10:
break
return pred_res[0]
def predict_dygraph_jit(data):
with fluid.dygraph.guard(place):
resnet = fluid.dygraph.jit.load(MODEL_SAVE_PATH)
resnet.eval()
pred_res = resnet(data)
return pred_res.numpy()
class TestResnet(unittest.TestCase):
def test_in_static_mode(self):
train_resnet_in_static_mode()
def train(self, to_static):
program_translator.enable(to_static)
return train(to_static)
def verify_predict(self):
image = np.random.random([1, 3, 224, 224]).astype('float32')
dy_pre = predict_dygraph(image)
st_pre = predict_static(image)
dy_jit_pre = predict_dygraph_jit(image)
self.assertTrue(
np.allclose(dy_pre, st_pre),
msg="dy_pre:\n {}\n, st_pre: \n{}.".format(dy_pre, st_pre))
self.assertTrue(
np.allclose(dy_jit_pre, st_pre),
msg="dy_jit_pre:\n {}\n, st_pre: \n{}.".format(dy_jit_pre, st_pre))
def test_resnet(self):
static_loss = self.train(to_static=True)
dygraph_loss = self.train(to_static=False)
self.assertTrue(
np.allclose(static_loss, dygraph_loss),
msg="static_loss: {} \n dygraph_loss: {}".format(static_loss,
dygraph_loss))
self.verify_predict()
if __name__ == '__main__':
......
......@@ -24,6 +24,7 @@ from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.nn import BatchNorm, Conv2D, Linear, Pool2D
from paddle.fluid.dygraph import declarative
from paddle.fluid.dygraph import ProgramTranslator
from paddle.fluid.dygraph.io import VARIABLE_FILENAME
SEED = 2020
np.random.seed(SEED)
......@@ -32,6 +33,8 @@ BATCH_SIZE = 8
EPOCH_NUM = 1
PRINT_STEP = 2
STEP_NUM = 10
MODEL_SAVE_PATH = "./se_resnet.inference.model"
DY_STATE_DICT_SAVE_PATH = "./se_resnet.dygraph"
place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() \
else fluid.CPUPlace()
......@@ -377,11 +380,60 @@ def train(train_reader, to_static):
step_idx += 1
if step_idx == STEP_NUM:
if to_static:
configs = fluid.dygraph.jit.SaveLoadConfig()
configs.output_spec = [pred]
fluid.dygraph.jit.save(se_resnext, MODEL_SAVE_PATH,
[img], configs)
else:
fluid.dygraph.save_dygraph(se_resnext.state_dict(),
DY_STATE_DICT_SAVE_PATH)
break
return pred.numpy(), avg_loss.numpy(), acc_top1.numpy(), acc_top5.numpy(
)
def predict_dygraph(data):
program_translator = ProgramTranslator()
program_translator.enable(False)
with fluid.dygraph.guard(place):
se_resnext = SeResNeXt()
model_dict, _ = fluid.dygraph.load_dygraph(DY_STATE_DICT_SAVE_PATH)
se_resnext.set_dict(model_dict)
se_resnext.eval()
label = np.random.random([1, 1]).astype("int64")
img = fluid.dygraph.to_variable(data)
label = fluid.dygraph.to_variable(label)
pred_res, _, _, _ = se_resnext(img, label)
return pred_res.numpy()
def predict_static(data):
exe = fluid.Executor(place)
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(
MODEL_SAVE_PATH, executor=exe, params_filename=VARIABLE_FILENAME)
pred_res = exe.run(inference_program,
feed={feed_target_names[0]: data},
fetch_list=fetch_targets)
return pred_res[0]
def predict_dygraph_jit(data):
with fluid.dygraph.guard(place):
se_resnext = fluid.dygraph.jit.load(MODEL_SAVE_PATH)
se_resnext.eval()
pred_res = se_resnext(data)
return pred_res.numpy()
class TestSeResnet(unittest.TestCase):
def setUp(self):
self.train_reader = paddle.batch(
......@@ -390,6 +442,18 @@ class TestSeResnet(unittest.TestCase):
batch_size=BATCH_SIZE,
drop_last=True)
def verify_predict(self):
image = np.random.random([1, 3, 224, 224]).astype('float32')
dy_pre = predict_dygraph(image)
st_pre = predict_static(image)
dy_jit_pre = predict_dygraph_jit(image)
self.assertTrue(
np.allclose(dy_pre, st_pre),
msg="dy_pre:\n {}\n, st_pre: \n{}.".format(dy_pre, st_pre))
self.assertTrue(
np.allclose(dy_jit_pre, st_pre),
msg="dy_jit_pre:\n {}\n, st_pre: \n{}.".format(dy_jit_pre, st_pre))
def test_check_result(self):
pred_1, loss_1, acc1_1, acc5_1 = train(
self.train_reader, to_static=False)
......@@ -409,6 +473,8 @@ class TestSeResnet(unittest.TestCase):
np.allclose(acc5_1, acc5_2),
msg="static acc5: {} \ndygraph acc5: {}".format(acc5_1, acc5_2))
self.verify_predict()
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册