Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3429c04b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3429c04b
编写于
8月 11, 2021
作者:
W
Wangzheee
提交者:
GitHub
8月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle TRT]fix_fc_int8_convert; fix_reshape_convert (#34787)
* fix_fc_reshape_convert * fix
上级
fc537d4f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
106 addition
and
52 deletion
+106
-52
paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc
paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc
+37
-0
paddle/fluid/inference/tensorrt/convert/fc_op.cc
paddle/fluid/inference/tensorrt/convert/fc_op.cc
+59
-49
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+10
-3
未找到文件。
paddle/fluid/framework/ir/quant_conv2d_dequant_fuse_pass.cc
浏览文件 @
3429c04b
...
@@ -153,6 +153,43 @@ QuantDequantFusePass::QuantDequantFusePass() {
...
@@ -153,6 +153,43 @@ QuantDequantFusePass::QuantDequantFusePass() {
.
AddAttr
(
"data_format"
)
.
AddAttr
(
"data_format"
)
.
IsStringIn
({
"NCHW"
,
"NHWC"
,
"AnyLayout"
})
.
IsStringIn
({
"NCHW"
,
"NHWC"
,
"AnyLayout"
})
.
End
();
.
End
();
AddOpCompat
(
OpCompat
(
"depthwise_conv2d"
))
.
AddInput
(
"Input"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Filter"
)
.
IsTensor
()
.
End
()
.
AddInput
(
"Bias"
)
.
IsTensor
()
.
IsOptional
()
.
End
()
.
AddInput
(
"ResidualData"
)
.
IsTensor
()
.
IsOptional
()
.
End
()
.
AddOutput
(
"Output"
)
.
IsTensor
()
.
End
()
.
AddAttr
(
"strides"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"paddings"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"padding_algorithm"
)
.
IsOptional
()
.
IsStringIn
({
"EXPLICIT"
,
"SAME"
,
"VALID"
})
.
End
()
.
AddAttr
(
"groups"
)
.
IsNumGE
(
1
)
.
End
()
.
AddAttr
(
"dilations"
)
.
IsType
<
std
::
vector
<
int
>>
()
.
End
()
.
AddAttr
(
"data_format"
)
.
IsStringIn
({
"NCHW"
,
"NHWC"
,
"AnyLayout"
})
.
End
();
AddOpCompat
(
OpCompat
(
"mul"
))
AddOpCompat
(
OpCompat
(
"mul"
))
.
AddInput
(
"X"
)
.
AddInput
(
"X"
)
.
IsTensor
()
.
IsTensor
()
...
...
paddle/fluid/inference/tensorrt/convert/fc_op.cc
浏览文件 @
3429c04b
...
@@ -33,6 +33,53 @@ namespace tensorrt {
...
@@ -33,6 +33,53 @@ namespace tensorrt {
*/
*/
class
FcOpConverter
:
public
OpConverter
{
class
FcOpConverter
:
public
OpConverter
{
public:
public:
nvinfer1
::
ILayer
*
reshape_before_fc
(
nvinfer1
::
ITensor
*
before_fc
,
nvinfer1
::
Dims
x_dim
,
int
x_num_col_dims
)
{
// add shuffle before fc
nvinfer1
::
Dims
reshape_before_fc_dim
;
reshape_before_fc_dim
.
nbDims
=
x_num_col_dims
+
3
;
// padding shape "* x q x 1 x 1"
for
(
int
i
=
0
;
i
<
reshape_before_fc_dim
.
nbDims
;
i
++
)
{
reshape_before_fc_dim
.
d
[
i
]
=
1
;
}
for
(
int
i
=
0
;
i
<
x_dim
.
nbDims
;
i
++
)
{
if
(
i
<
x_num_col_dims
)
{
reshape_before_fc_dim
.
d
[
i
]
=
0
;
}
else
{
if
(
x_dim
.
d
[
i
]
<
0
)
{
reshape_before_fc_dim
.
d
[
x_num_col_dims
]
=
-
1
;
break
;
}
reshape_before_fc_dim
.
d
[
x_num_col_dims
]
*=
x_dim
.
d
[
i
];
}
}
auto
*
reshape_before_fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
before_fc
);
reshape_before_fc_layer
->
setReshapeDimensions
(
reshape_before_fc_dim
);
return
reshape_before_fc_layer
;
}
nvinfer1
::
ILayer
*
reshape_after_fc
(
nvinfer1
::
ITensor
*
after_fc
,
nvinfer1
::
Dims
x_dim
,
int
x_num_col_dims
)
{
// add shuffle after fc
nvinfer1
::
Dims
reshape_after_fc_dim
;
if
(
engine_
->
use_oss
()
&&
engine_
->
with_ernie
()
&&
x_dim
.
nbDims
==
4
&&
x_dim
.
d
[
2
]
==
1
&&
x_dim
.
d
[
3
]
==
1
&&
x_num_col_dims
==
1
)
{
// If use tensorrt'oss, the x_dim and x_num_col_dims need change
reshape_after_fc_dim
.
nbDims
=
4
;
}
else
{
reshape_after_fc_dim
.
nbDims
=
x_num_col_dims
+
1
;
}
for
(
int
i
=
0
;
i
<
reshape_after_fc_dim
.
nbDims
;
i
++
)
{
reshape_after_fc_dim
.
d
[
i
]
=
0
;
}
auto
*
reshape_after_fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
after_fc
);
reshape_after_fc_layer
->
setReshapeDimensions
(
reshape_after_fc_dim
);
return
reshape_after_fc_layer
;
}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a fluid fc op to tensorrt fc layer without bias"
;
VLOG
(
3
)
<<
"convert a fluid fc op to tensorrt fc layer without bias"
;
...
@@ -92,10 +139,8 @@ class FcOpConverter : public OpConverter {
...
@@ -92,10 +139,8 @@ class FcOpConverter : public OpConverter {
"it's %d-dimensional."
,
"it's %d-dimensional."
,
Y_t
->
dims
().
size
()));
// a matrix
Y_t
->
dims
().
size
()));
// a matrix
size_t
n_output
=
Y_t
->
dims
()[
1
];
size_t
n_output
=
Y_t
->
dims
()[
1
];
int
m
=
Y_t
->
dims
()[
0
];
int
m
=
Y_t
->
dims
()[
0
];
int
n
=
Y_t
->
dims
()[
1
];
int
n
=
Y_t
->
dims
()[
1
];
auto
tranpose_weight
=
[](
const
float
*
src
,
float
*
dst
,
int
m
,
int
n
)
{
auto
tranpose_weight
=
[](
const
float
*
src
,
float
*
dst
,
int
m
,
int
n
)
{
for
(
int
i
=
0
;
i
<
m
;
i
++
)
{
for
(
int
i
=
0
;
i
<
m
;
i
++
)
{
for
(
int
j
=
0
;
j
<
n
;
j
++
)
{
for
(
int
j
=
0
;
j
<
n
;
j
++
)
{
...
@@ -119,47 +164,35 @@ class FcOpConverter : public OpConverter {
...
@@ -119,47 +164,35 @@ class FcOpConverter : public OpConverter {
auto
*
fc_layer_int8
=
auto
*
fc_layer_int8
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Convolution
,
*
inputs
,
n_output
,
TRT_ENGINE_ADD_LAYER
(
engine_
,
Convolution
,
*
inputs
,
n_output
,
nv_ksize
,
weight
.
get
(),
bias
.
get
());
nv_ksize
,
weight
.
get
(),
bias
.
get
());
engine_
->
SetTensorDynamicRange
(
fc_layer_int8
->
getOutput
(
0
),
out_scale
);
auto
*
fc_after_reshape_int8
=
reshape_after_fc
(
fc_layer_int8
->
getOutput
(
0
),
x_dim
,
x_num_col_dims
);
engine_
->
SetTensorDynamicRange
(
fc_after_reshape_int8
->
getOutput
(
0
),
out_scale
);
if
(
activation_type
==
"relu"
)
{
if
(
activation_type
==
"relu"
)
{
nvinfer1
::
IActivationLayer
*
relu_layer_int8
=
TRT_ENGINE_ADD_LAYER
(
nvinfer1
::
IActivationLayer
*
relu_layer_int8
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
(
fc_
layer
_int8
->
getOutput
(
0
)),
engine_
,
Activation
,
*
(
fc_
after_reshape
_int8
->
getOutput
(
0
)),
nvinfer1
::
ActivationType
::
kRELU
);
nvinfer1
::
ActivationType
::
kRELU
);
RreplenishLayerAndOutput
(
relu_layer_int8
,
"relu_after_fc_shuffle"
,
RreplenishLayerAndOutput
(
relu_layer_int8
,
"relu_after_fc_shuffle"
,
{
output_name
},
test_mode
);
{
output_name
},
test_mode
);
}
else
{
}
else
{
RreplenishLayerAndOutput
(
fc_
layer
_int8
,
"shuffle_after_fc"
,
RreplenishLayerAndOutput
(
fc_
after_reshape
_int8
,
"shuffle_after_fc"
,
{
output_name
},
test_mode
);
{
output_name
},
test_mode
);
}
}
}
else
{
}
else
{
// add fc layer
// add fc layer
auto
*
fc_layer_
before
=
auto
*
fc_layer_
float
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
inputs
,
n_output
,
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
inputs
,
n_output
,
weight
.
get
(),
bias
.
get
());
weight
.
get
(),
bias
.
get
());
fc_layer_before
->
setName
(
auto
*
fc_after_reshape_float
=
reshape_after_fc
(
(
"fc_layer_before(Output: "
+
output_name
+
")"
).
c_str
());
fc_layer_float
->
getOutput
(
0
),
x_dim
,
x_num_col_dims
);
// add shuffle after fc
nvinfer1
::
Dims
reshape_after_fc_dim
;
if
(
engine_
->
use_oss
()
&&
engine_
->
with_ernie
()
&&
x_dim
.
nbDims
==
4
&&
x_dim
.
d
[
2
]
==
1
&&
x_dim
.
d
[
3
]
==
1
&&
x_num_col_dims
==
1
)
{
// If use tensorrt'oss, the x_dim and x_num_col_dims need change
reshape_after_fc_dim
.
nbDims
=
4
;
}
else
{
reshape_after_fc_dim
.
nbDims
=
x_num_col_dims
+
1
;
}
for
(
int
i
=
0
;
i
<
reshape_after_fc_dim
.
nbDims
;
i
++
)
{
reshape_after_fc_dim
.
d
[
i
]
=
0
;
}
auto
*
fc_layer_float
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
fc_layer_before
->
getOutput
(
0
));
fc_layer_float
->
setReshapeDimensions
(
reshape_after_fc_dim
);
if
(
activation_type
==
"relu"
)
{
if
(
activation_type
==
"relu"
)
{
nvinfer1
::
IActivationLayer
*
relu_layer_float
=
TRT_ENGINE_ADD_LAYER
(
nvinfer1
::
IActivationLayer
*
relu_layer_float
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
(
fc_
layer
_float
->
getOutput
(
0
)),
engine_
,
Activation
,
*
(
fc_
after_reshape
_float
->
getOutput
(
0
)),
nvinfer1
::
ActivationType
::
kRELU
);
nvinfer1
::
ActivationType
::
kRELU
);
RreplenishLayerAndOutput
(
relu_layer_float
,
"relu_after_fc_shuffle"
,
RreplenishLayerAndOutput
(
relu_layer_float
,
"relu_after_fc_shuffle"
,
{
output_name
},
test_mode
);
{
output_name
},
test_mode
);
}
else
{
}
else
{
RreplenishLayerAndOutput
(
fc_
layer
_float
,
"shuffle_after_fc"
,
RreplenishLayerAndOutput
(
fc_
after_reshape
_float
,
"shuffle_after_fc"
,
{
output_name
},
test_mode
);
{
output_name
},
test_mode
);
}
}
}
}
...
@@ -169,12 +202,10 @@ class FcOpConverter : public OpConverter {
...
@@ -169,12 +202,10 @@ class FcOpConverter : public OpConverter {
weight_data_tmp
.
reserve
(
Y_t
->
numel
());
weight_data_tmp
.
reserve
(
Y_t
->
numel
());
memcpy
(
weight_data_tmp
.
data
(),
weight_data
,
Y_t
->
numel
()
*
sizeof
(
float
));
memcpy
(
weight_data_tmp
.
data
(),
weight_data
,
Y_t
->
numel
()
*
sizeof
(
float
));
tranpose_weight
(
weight_data_tmp
.
data
(),
weight_data
,
m
,
n
);
tranpose_weight
(
weight_data_tmp
.
data
(),
weight_data
,
m
,
n
);
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
Y_t
->
numel
())};
static_cast
<
size_t
>
(
Y_t
->
numel
())};
weight
.
dims
.
assign
({
n
,
m
});
weight
.
dims
.
assign
({
n
,
m
});
float
*
bias_data
=
nullptr
;
float
*
bias_data
=
nullptr
;
int
bias_num
=
0
;
int
bias_num
=
0
;
if
(
with_bias
)
{
if
(
with_bias
)
{
...
@@ -204,28 +235,7 @@ class FcOpConverter : public OpConverter {
...
@@ -204,28 +235,7 @@ class FcOpConverter : public OpConverter {
"converter expects x_dim.nbDims > x_num_col_dims, but "
"converter expects x_dim.nbDims > x_num_col_dims, but "
"x_dim.nbDims : %d, x_num_col_dims : %d."
,
"x_dim.nbDims : %d, x_num_col_dims : %d."
,
x_dim
.
nbDims
,
x_num_col_dims
));
x_dim
.
nbDims
,
x_num_col_dims
));
// add shuffle before fc
auto
*
reshape_before_fc_layer
=
reshape_before_fc
(
X
,
x_dim
,
x_num_col_dims
);
nvinfer1
::
Dims
reshape_before_fc_dim
;
reshape_before_fc_dim
.
nbDims
=
x_num_col_dims
+
3
;
// padding shape "* x q x 1 x 1"
for
(
int
i
=
0
;
i
<
reshape_before_fc_dim
.
nbDims
;
i
++
)
{
reshape_before_fc_dim
.
d
[
i
]
=
1
;
}
for
(
int
i
=
0
;
i
<
x_dim
.
nbDims
;
i
++
)
{
if
(
i
<
x_num_col_dims
)
{
reshape_before_fc_dim
.
d
[
i
]
=
0
;
}
else
{
if
(
x_dim
.
d
[
i
]
<
0
)
{
reshape_before_fc_dim
.
d
[
x_num_col_dims
]
=
-
1
;
break
;
}
reshape_before_fc_dim
.
d
[
x_num_col_dims
]
*=
x_dim
.
d
[
i
];
}
}
auto
*
reshape_before_fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
X
);
reshape_before_fc_layer
->
setReshapeDimensions
(
reshape_before_fc_dim
);
reshape_before_fc_layer
->
setName
(
(
"shuffle_before_fc(Output: "
+
output_name
+
")"
).
c_str
());
auto
*
reshape_itensor
=
reshape_before_fc_layer
->
getOutput
(
0
);
auto
*
reshape_itensor
=
reshape_before_fc_layer
->
getOutput
(
0
);
if
(
enable_int8
)
{
if
(
enable_int8
)
{
engine_
->
SetTensorDynamicRange
(
reshape_itensor
,
in_scale
);
engine_
->
SetTensorDynamicRange
(
reshape_itensor
,
in_scale
);
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
3429c04b
...
@@ -698,15 +698,22 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
...
@@ -698,15 +698,22 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
return
false
;
return
false
;
}
}
}
}
if
(
op_type
==
"reshape"
||
op_type
==
"reshape2"
)
{
if
(
op_type
==
"reshape"
||
op_type
==
"reshape2"
)
{
if
(
!
desc
.
HasAttr
(
"shape"
))
{
if
(
!
desc
.
HasAttr
(
"shape"
))
{
return
false
;
return
false
;
}
}
// Paddle-TRT does not support the input tensors: Shape and ShapeTensor
// Paddle-TRT does not support the input tensors: Shape and ShapeTensor
auto
reshape_inputs
=
desc
.
Inputs
();
auto
reshape_inputs
=
desc
.
Inputs
();
if
(
reshape_inputs
.
find
(
"Shape"
)
!=
reshape_inputs
.
end
()
||
if
(
reshape_inputs
.
find
(
"Shape"
)
!=
reshape_inputs
.
end
())
{
reshape_inputs
.
find
(
"ShapeTensor"
)
!=
reshape_inputs
.
end
())
{
if
(
desc
.
Input
(
"Shape"
).
size
()
>=
1
)
{
return
false
;
return
false
;
}
}
if
(
reshape_inputs
.
find
(
"ShapeTensor"
)
!=
reshape_inputs
.
end
())
{
if
(
desc
.
Input
(
"ShapeTensor"
).
size
()
>=
1
)
{
return
false
;
}
}
}
std
::
vector
<
int
>
shape
=
std
::
vector
<
int
>
shape
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"shape"
));
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
desc
.
GetAttr
(
"shape"
));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录