Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
338f9e05
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
338f9e05
编写于
8月 07, 2021
作者:
R
ronnywang
提交者:
GitHub
8月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add sequence_mask_op_npu and tests (#34455)
上级
46808afc
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
320 addition
and
0 deletion
+320
-0
paddle/fluid/operators/sequence_ops/sequence_mask_op_npu.cc
paddle/fluid/operators/sequence_ops/sequence_mask_op_npu.cc
+138
-0
python/paddle/fluid/tests/unittests/npu/test_sequence_mask_npu.py
...addle/fluid/tests/unittests/npu/test_sequence_mask_npu.py
+182
-0
未找到文件。
paddle/fluid/operators/sequence_ops/sequence_mask_op_npu.cc
0 → 100644
浏览文件 @
338f9e05
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_ops/sequence_mask_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceMaskNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
int
maxlen
=
ctx
.
Attr
<
int
>
(
"maxlen"
);
if
(
ctx
.
HasInput
(
"MaxLenTensor"
))
{
auto
max_len_tensor
=
ctx
.
Input
<
Tensor
>
(
"MaxLenTensor"
);
PADDLE_ENFORCE_NOT_NULL
(
max_len_tensor
,
platform
::
errors
::
InvalidArgument
(
"Input(MaxLenTensor) should not be NULL."
"But received Input(MaxLenTensor) is NULL"
));
framework
::
Tensor
temp
;
TensorCopySync
(
*
max_len_tensor
,
platform
::
CPUPlace
(),
&
temp
);
maxlen
=
*
temp
.
data
<
int32_t
>
();
PADDLE_ENFORCE_GT
(
maxlen
,
0
,
platform
::
errors
::
InvalidArgument
(
"Input(MaxLenTensor) value should be greater than 0. But "
"received Input(MaxLenTensor) value = %d."
,
maxlen
));
}
if
(
maxlen
<
0
)
{
auto
x_numel
=
x
->
numel
();
std
::
vector
<
T
>
x_vec
;
framework
::
TensorToVector
(
*
x
,
dev_ctx
,
&
x_vec
);
auto
x_data
=
x_vec
.
data
();
maxlen
=
static_cast
<
int
>
(
*
std
::
max_element
(
x_data
,
x_data
+
x_numel
));
}
auto
y_dim
=
framework
::
vectorize
<
int
>
(
x
->
dims
());
y_dim
.
push_back
(
maxlen
);
Tensor
cast_x
;
cast_x
.
mutable_data
<
int32_t
>
(
x
->
dims
(),
ctx
.
GetPlace
());
const
auto
&
cast1_runner
=
NpuOpRunner
(
"Cast"
,
{
*
x
},
{
cast_x
},
{{
"dst_type"
,
ConvertToNpuDtype
(
cast_x
.
type
())}});
cast1_runner
.
Run
(
dev_ctx
.
stream
());
Tensor
tmp
;
tmp
.
mutable_data
<
int32_t
>
(
framework
::
make_ddim
({
maxlen
}),
ctx
.
GetPlace
());
NpuOpRunner
range_runner
;
range_runner
.
SetType
(
"Range"
);
range_runner
.
AddInput
(
std
::
vector
<
int32_t
>
({
0
}));
range_runner
.
AddInput
(
std
::
vector
<
int32_t
>
({
maxlen
}));
range_runner
.
AddInput
(
std
::
vector
<
int32_t
>
({
1
}));
range_runner
.
AddOutput
(
tmp
);
range_runner
.
Run
(
dev_ctx
.
stream
());
Tensor
expand_tmp
;
expand_tmp
.
mutable_data
<
int32_t
>
(
framework
::
make_ddim
(
y_dim
),
ctx
.
GetPlace
());
const
auto
&
expand_runner
=
NpuOpRunner
(
"ExpandD"
,
{
tmp
},
{
expand_tmp
},
{{
"shape"
,
y_dim
}});
expand_runner
.
Run
(
dev_ctx
.
stream
());
auto
x_dims
=
framework
::
vectorize
<
int
>
(
x
->
dims
());
x_dims
.
push_back
(
1
);
cast_x
.
Resize
(
framework
::
make_ddim
({
x_dims
}));
Tensor
x_tmp
;
x_tmp
.
mutable_data
<
int32_t
>
(
framework
::
make_ddim
(
y_dim
),
ctx
.
GetPlace
());
const
auto
&
tile_runner
=
NpuOpRunner
(
"TileWithAxis"
,
{
cast_x
},
{
x_tmp
},
{{
"axis"
,
x
->
dims
().
size
()},
{
"tiles"
,
maxlen
}});
tile_runner
.
Run
(
dev_ctx
.
stream
());
Tensor
y_tmp
;
y_tmp
.
mutable_data
<
uint8_t
>
(
framework
::
make_ddim
(
y_dim
),
ctx
.
GetPlace
());
const
auto
&
less_runner
=
NpuOpRunner
(
"Less"
,
{
expand_tmp
,
x_tmp
},
{
y_tmp
},
{});
less_runner
.
Run
(
dev_ctx
.
stream
());
y
->
Resize
(
framework
::
make_ddim
(
y_dim
));
auto
out_dtype
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
ctx
.
Attr
<
int
>
(
"out_dtype"
));
if
(
out_dtype
==
framework
::
proto
::
VarType
::
INT32
)
{
y
->
mutable_data
<
int32_t
>
(
ctx
.
GetPlace
());
}
else
if
(
out_dtype
==
framework
::
proto
::
VarType
::
INT64
)
{
y
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
}
else
if
(
out_dtype
==
framework
::
proto
::
VarType
::
FP32
)
{
y
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
}
else
if
(
out_dtype
==
framework
::
proto
::
VarType
::
FP64
)
{
y
->
mutable_data
<
double
>
(
ctx
.
GetPlace
());
}
else
if
(
out_dtype
==
framework
::
proto
::
VarType
::
BOOL
)
{
y
->
mutable_data
<
bool
>
(
ctx
.
GetPlace
());
}
else
if
(
out_dtype
==
framework
::
proto
::
VarType
::
UINT8
)
{
y
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
}
else
{
PADDLE_ENFORCE
(
false
,
platform
::
errors
::
InvalidArgument
(
"out_dtype only supporing int32, int64, fp32, fp64, "
"bool, uint8, but receive out_dtype is %d"
,
out_dtype
));
}
const
auto
&
cast2_runner
=
NpuOpRunner
(
"Cast"
,
{
y_tmp
},
{
*
y
},
{{
"dst_type"
,
ConvertToNpuDtype
(
out_dtype
)}});
cast2_runner
.
Run
(
dev_ctx
.
stream
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
sequence_mask
,
ops
::
SequenceMaskNPUKernel
<
plat
::
NPUDeviceContext
,
int32_t
>
,
ops
::
SequenceMaskNPUKernel
<
plat
::
NPUDeviceContext
,
int64_t
>
,
ops
::
SequenceMaskNPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
SequenceMaskNPUKernel
<
plat
::
NPUDeviceContext
,
double
>
);
python/paddle/fluid/tests/unittests/npu/test_sequence_mask_npu.py
0 → 100644
浏览文件 @
338f9e05
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
,
Program
,
program_guard
paddle
.
enable_static
()
class
SequenceMaskTestBase
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
initDefaultParameters
(
self
):
self
.
op_type
=
'sequence_mask'
self
.
maxlen
=
10
self
.
mask_dtype
=
'int64'
self
.
x
=
[[
0
,
3
,
4
],
[
5
,
7
,
9
]]
def
initParameters
(
self
):
pass
def
setUp
(
self
):
self
.
set_npu
()
self
.
initDefaultParameters
()
self
.
initParameters
()
if
not
isinstance
(
self
.
x
,
np
.
ndarray
):
self
.
x
=
np
.
array
(
self
.
x
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
outputs
=
{
'Y'
:
self
.
calc_ground_truth_mask
()}
self
.
attrs
=
{
'maxlen'
:
self
.
maxlen
,
'out_dtype'
:
convert_np_dtype_to_dtype_
(
self
.
mask_dtype
)
}
def
calc_ground_truth_mask
(
self
):
maxlen
=
np
.
max
(
self
.
x
)
if
self
.
maxlen
<
0
else
self
.
maxlen
shape
=
self
.
x
.
shape
+
(
maxlen
,
)
index_broadcast
=
np
.
broadcast_to
(
np
.
reshape
(
range
(
maxlen
),
newshape
=
[
1
]
*
self
.
x
.
ndim
+
[
-
1
]),
shape
=
shape
)
x_broadcast
=
np
.
broadcast_to
(
np
.
reshape
(
self
.
x
,
newshape
=
self
.
x
.
shape
+
(
-
1
,
)),
shape
=
shape
)
return
(
index_broadcast
<
x_broadcast
).
astype
(
self
.
mask_dtype
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
paddle
.
NPUPlace
(
0
))
class
SequenceMaskTest1
(
SequenceMaskTestBase
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'bool'
class
SequenceMaskTest2
(
SequenceMaskTestBase
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'uint8'
class
SequenceMaskTest3
(
SequenceMaskTestBase
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'int32'
class
SequenceMaskTest4
(
SequenceMaskTestBase
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'float32'
class
SequenceMaskTest5
(
SequenceMaskTestBase
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'float64'
class
SequenceMaskTest6
(
SequenceMaskTestBase
):
def
initParameters
(
self
):
self
.
maxlen
=
-
1
class
SequenceMaskTestBase_tensor_attr
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
initDefaultParameters
(
self
):
self
.
op_type
=
'sequence_mask'
self
.
maxlen
=
10
self
.
maxlen_tensor
=
np
.
ones
((
1
),
'int32'
)
*
10
self
.
mask_dtype
=
'int64'
self
.
x
=
[[
0
,
3
,
4
],
[
5
,
7
,
9
]]
def
initParameters
(
self
):
pass
def
setUp
(
self
):
self
.
set_npu
()
self
.
initDefaultParameters
()
self
.
initParameters
()
if
not
isinstance
(
self
.
x
,
np
.
ndarray
):
self
.
x
=
np
.
array
(
self
.
x
)
self
.
inputs
=
{
'X'
:
self
.
x
,
'MaxLenTensor'
:
self
.
maxlen_tensor
}
self
.
outputs
=
{
'Y'
:
self
.
calc_ground_truth_mask
()}
self
.
attrs
=
{
'out_dtype'
:
convert_np_dtype_to_dtype_
(
self
.
mask_dtype
)}
def
calc_ground_truth_mask
(
self
):
maxlen
=
np
.
max
(
self
.
x
)
if
self
.
maxlen
<
0
else
self
.
maxlen
shape
=
self
.
x
.
shape
+
(
maxlen
,
)
index_broadcast
=
np
.
broadcast_to
(
np
.
reshape
(
range
(
maxlen
),
newshape
=
[
1
]
*
self
.
x
.
ndim
+
[
-
1
]),
shape
=
shape
)
x_broadcast
=
np
.
broadcast_to
(
np
.
reshape
(
self
.
x
,
newshape
=
self
.
x
.
shape
+
(
-
1
,
)),
shape
=
shape
)
return
(
index_broadcast
<
x_broadcast
).
astype
(
self
.
mask_dtype
)
def
test_check_output
(
self
):
self
.
check_output
()
class
SequenceMaskTest1_tensor_attr
(
SequenceMaskTestBase_tensor_attr
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'bool'
class
SequenceMaskTest2_tensor_attr
(
SequenceMaskTestBase_tensor_attr
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'uint8'
class
SequenceMaskTest3_tensor_attr
(
SequenceMaskTestBase_tensor_attr
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'int32'
class
SequenceMaskTest4_tensor_attr
(
SequenceMaskTestBase_tensor_attr
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'float32'
class
SequenceMaskTest5_tensor_attr
(
SequenceMaskTestBase_tensor_attr
):
def
initParameters
(
self
):
self
.
mask_dtype
=
'float64'
class
TestSequenceMaskOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
input_data
=
np
.
random
.
uniform
(
1
,
5
,
[
4
]).
astype
(
"float32"
)
def
test_Variable
():
# the input must be Variable
fluid
.
layers
.
sequence_mask
(
input_data
,
maxlen
=
4
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录