Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3317cf01
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3317cf01
编写于
1月 20, 2021
作者:
H
huangxu96
提交者:
GitHub
1月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry pick]Add pure fp16 amp_init for fleet API. (#30592)
* add fleet amp.init() * add unittest for fleet_amp_init
上级
619869bd
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
150 addition
and
2 deletion
+150
-2
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+64
-0
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
+6
-2
python/paddle/fluid/tests/unittests/test_fleet_amp_init.py
python/paddle/fluid/tests/unittests/test_fleet_amp_init.py
+80
-0
未找到文件。
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
3317cf01
...
...
@@ -958,6 +958,70 @@ class Fleet(object):
# imitate target optimizer retrieval
return
self
.
user_defined_optimizer
.
clear_grad
()
def
amp_init
(
self
,
place
,
scope
=
None
,
test_program
=
None
,
use_fp16_test
=
False
):
"""
Init the amp training, such as cast fp32 parameters to fp16 type.
Args:
place(CUDAPlace): place is used to initialize
fp16 parameters with fp32 values.
scope(Scope): The scope is used to find fp32 parameters.
test_program(Program): The program is used for testing.
use_fp16_test(bool): Whether to use fp16 testing.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
paddle.enable_static()
def run_example_code():
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
# 1) Use fp16_guard to control the range of fp16 kernels used.
with paddle.static.amp.fp16_guard():
bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
pool = F.max_pool2d(bn, kernel_size=2, stride=2)
hidden = paddle.static.nn.fc(pool, size=10)
loss = paddle.mean(hidden)
# 2) Create the optimizer and set `multi_precision` to True.
# Setting `multi_precision` to True can avoid the poor accuracy
# or the slow convergence in a way.
optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
# 3) These ops in `custom_black_list` will keep in the float32 computation type.
amp_list = paddle.static.amp.CustomOpLists(
custom_black_list=['pool2d'])
# 4) The entry of Paddle AMP.
# Enable pure fp16 training by setting `use_pure_fp16` to True.
optimizer = paddle.static.amp.decorate(
optimizer,
amp_list,
init_loss_scaling=128.0,
use_dynamic_loss_scaling=True,
use_pure_fp16=True)
# If you don't use the default_startup_program(), you sholud pass
# your defined `startup_program` into `minimize`.
optimizer.minimize(loss)
exe.run(paddle.static.default_startup_program())
# 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
# If you want to perform the testing process, you should pass `test_program` into `amp_init`.
optimizer.amp_init(place, scope=paddle.static.global_scope())
if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
run_example_code()
"""
# imitate target optimizer retrieval
return
self
.
user_defined_optimizer
.
amp_init
(
place
,
scope
=
None
,
test_program
=
None
,
use_fp16_test
=
False
)
def
_final_strategy
(
self
):
if
"valid_strategy"
not
in
self
.
_context
:
print
(
...
...
python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
浏览文件 @
3317cf01
...
...
@@ -95,6 +95,9 @@ black_list = {
'sigmoid_cross_entropy_with_logits'
,
'cross_entropy'
,
'cross_entropy2'
,
# fp16 is slower than fp32, though fp16 is supported.
'lookup_table'
,
'lookup_table_v2'
,
}
# This set contains two types of ops. All ops supported fp16 calculation. One
...
...
@@ -115,8 +118,6 @@ gray_list = {
'layer_norm'
,
'tanh'
,
'sigmoid'
,
'lookup_table'
,
'lookup_table_v2'
,
'top_k'
,
'pool2d'
,
'pool3d'
,
...
...
@@ -284,6 +285,9 @@ unsupported_fp16_list = {
'generate_proposals'
,
'generate_proposal_labels'
,
'generate_mask_labels'
,
# fp16 is slower than fp32, though fp16 is supported.
'lookup_table'
,
'lookup_table_v2'
,
}
CustomOpLists
=
AutoMixedPrecisionLists
python/paddle/fluid/tests/unittests/test_fleet_amp_init.py
0 → 100644
浏览文件 @
3317cf01
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
paddle.distributed.fleet
as
fleet
import
paddle.fluid
as
fluid
import
unittest
import
paddle.nn.functional
as
F
import
numpy
as
np
paddle
.
enable_static
()
def
gen_data
():
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
)
}
def
mlp
(
input_x
,
input_y
,
hid_dim
=
128
,
label_dim
=
2
):
fc_1
=
paddle
.
static
.
nn
.
fc
(
x
=
input_x
,
size
=
hid_dim
,
activation
=
'tanh'
)
fc_2
=
paddle
.
static
.
nn
.
fc
(
x
=
fc_1
,
size
=
hid_dim
,
activation
=
'tanh'
)
prediction
=
paddle
.
static
.
nn
.
fc
(
x
=
[
fc_2
],
size
=
label_dim
,
activation
=
'softmax'
)
cost
=
F
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
return
avg_cost
class
TestFleetAMPInit
(
unittest
.
TestCase
):
def
test_fleet_amp_init
(
self
):
if
not
fluid
.
core
.
is_compiled_with_cuda
():
return
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
None
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
cost
=
mlp
(
input_x
,
input_y
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
0.001
,
momentum
=
0.9
,
weight_decay
=
fluid
.
regularizer
.
L2Decay
(
1e-4
),
multi_precision
=
True
)
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
optimizer
=
paddle
.
static
.
amp
.
decorate
(
optimizer
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
optimizer
.
minimize
(
cost
)
place
=
paddle
.
CUDAPlace
(
0
)
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
optimizer
.
amp_init
(
place
,
use_fp16_test
=
True
)
step
=
1
for
i
in
range
(
step
):
cost_val
=
exe
.
run
(
program
=
paddle
.
static
.
default_main_program
(),
feed
=
gen_data
(),
fetch_list
=
[
cost
.
name
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录