提交 330c509b 编写于 作者: Q qijun

Merge remote-tracking branch 'baidu/develop' into sgd_op_sparse_kernel

......@@ -281,12 +281,16 @@ static void CreateGradVarInBlock(
auto ops = block_desc->AllOps();
for (size_t op_index = grad_op_start_index; op_index < ops.size();
++op_index) {
bool need_infer_shape = false;
ForEachVarName(ops[op_index]->Outputs(),
[&](const std::string& grad_var_name) {
if (block_desc->HasVar(grad_var_name)) {
return false;
}
block_desc->Var(grad_var_name);
need_infer_shape = true;
auto var = block_desc->Var(grad_var_name);
// FIXME(qiao) infer the datatype
var->SetDataType(framework::DataType::FP32);
auto it = param_name_map.find(grad_var_name);
if (it == param_name_map.end()) {
return false;
......@@ -298,6 +302,9 @@ static void CreateGradVarInBlock(
grad_record.op_idx_ = static_cast<int>(op_index);
return false; /* not break */
});
if (need_infer_shape) {
ops[op_index]->InferShape(*block_desc);
}
}
}
......@@ -428,10 +435,16 @@ ParamGradInfoMap AppendBackward(
auto& all_ops = root_block->ops_;
// insert fill one op for target
// TODO(qiao) add some check to the target.
std::string fill_one_op_out = GradVarName(target.Name());
std::vector<int64_t> target_shape_desc = target.Shape();
std::vector<int> target_shape;
std::transform(target_shape_desc.begin(), target_shape_desc.end(),
std::back_inserter(target_shape),
[](int64_t dim) { return static_cast<int>(dim); });
std::unique_ptr<OpDescBind> fill_one_op(
new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}},
{{"shape", std::vector<int>{1}},
{{"shape", target_shape},
{"value", static_cast<float>(1.0)},
{"data_type", framework::DataType::FP32}}));
all_ops.push_back(std::move(fill_one_op));
......@@ -443,13 +456,22 @@ ParamGradInfoMap AppendBackward(
auto backward_op_descs = MakeBlockBackward(program_desc, root_block_idx,
&no_grad_var_names, &grad_to_var);
std::unordered_map<std::string, GradVarInfo> retv;
// Create Variable
for (auto& ptr : backward_op_descs) {
all_ops.push_back(std::move(ptr));
}
root_block->Var(fill_one_op_out);
// Create Variable
// Create target gradient variable
std::unordered_map<std::string, GradVarInfo> retv;
auto var = root_block->Var(fill_one_op_out);
// FIXME(qiao) infer the data type
var->SetDataType(framework::DataType::FP32);
var->SetShape(target.Shape());
auto& target_grad = retv[target.Name()];
target_grad.name_ = fill_one_op_out;
target_grad.block_idx_ = root_block_idx;
target_grad.op_idx_ = static_cast<int>(forward_op_num);
// create grad_var for all blocks in this program
CreateGradVarInBlock(forward_op_num, grad_to_var, root_block, &retv);
......
......@@ -26,6 +26,20 @@ namespace framework {
using DeviceContext = platform::DeviceContext;
class NoneOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {}
};
template <typename Place, typename T>
class NoneKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {}
};
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public:
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
......@@ -215,19 +229,51 @@ class MinusOpMaker : public OpProtoAndCheckerMaker {
namespace f = paddle::framework;
namespace ops = paddle::operators;
using EnforceNotMet = paddle::platform::EnforceNotMet;
REGISTER_OPERATOR(rowwise_add, f::NOP, f::RowWiseAddOpMaker,
// rowwise_add
REGISTER_OPERATOR(rowwise_add, f::NoneOp, f::RowWiseAddOpMaker,
f::RowWiseAddGradMaker);
REGISTER_OPERATOR(rowwise_add_grad, f::NOP);
REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP);
REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP);
REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker);
REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker);
REGISTER_OP(sum, f::NOP, f::SumOpMaker, sum_grad, f::NOP);
REGISTER_OP_CPU_KERNEL(rowwise_add,
f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OPERATOR(rowwise_add_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(rowwise_add_grad,
f::NoneKernel<paddle::platform::CPUPlace, float>);
// mul
REGISTER_OP(mul, f::NoneOp, f::MulOpMaker, mul_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(mul, f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mul_grad,
f::NoneKernel<paddle::platform::CPUPlace, float>);
// sigmoid
REGISTER_OP(sigmoid, f::NoneOp, f::SigmoidOpMaker, sigmoid_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(sigmoid,
f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NoneOp, f::NoGradOpMaker);
// fill_zeros_like
REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NoneOp, f::FillZeroOpMaker);
REGISTER_OP_CPU_KERNEL(fill_zeros_like,
f::NoneKernel<paddle::platform::CPUPlace, float>);
// sum
REGISTER_OP(sum, f::NoneOp, f::SumOpMaker, sum_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(sum, f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(sum_grad,
f::NoneKernel<paddle::platform::CPUPlace, float>);
// fc
REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad,
f::NOP);
REGISTER_OP(mult_in_out, f::NOP, f::MultInOutOpMaker, mult_in_out_grad, f::NOP);
REGISTER_OPERATOR(minus, f::NOP, f::MinusOpMaker, f::MinusGradOpDescMaker);
// many_output_op
REGISTER_OP(many_output_op, f::NoneOp, f::ManyOutputOpMaker,
many_output_op_grad, f::NoneOp);
// mult_in_out
REGISTER_OP(mult_in_out, f::NoneOp, f::MultInOutOpMaker, mult_in_out_grad,
f::NoneOp);
REGISTER_OP_CPU_KERNEL(mult_in_out,
f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mult_in_out_grad,
f::NoneKernel<paddle::platform::CPUPlace, float>);
// minus
REGISTER_OPERATOR(minus, f::NoneOp, f::MinusOpMaker, f::MinusGradOpDescMaker);
REGISTER_OP_CPU_KERNEL(minus, f::NoneKernel<paddle::platform::CPUPlace, float>);
// scale
REGISTER_OPERATOR(scale, f::NoneOp);
REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel<paddle::platform::CPUPlace, float>);
TEST(Backward, simple_op_not_need_grad) {
auto fwd = f::OpRegistry::CreateOp(
......@@ -463,6 +509,7 @@ TEST(Backward, simple_single_op) {
f::ProgramDesc *program_desc = GetNewProgramDesc();
f::ProgramDescBind &program = f::ProgramDescBind::Instance(program_desc);
f::BlockDescBind *block = program.Block(0);
f::OpDescBind *op = block->AppendOp();
op->SetType("rowwise_add");
op->SetInput("X", {"x"});
......@@ -487,7 +534,7 @@ TEST(Backward, simple_single_op) {
EXPECT_EQ(grad_op->Output(f::GradVarName("b")),
std::vector<std::string>({f::GradVarName("b")}));
EXPECT_EQ(var_to_grad.size(), 2UL);
EXPECT_EQ(var_to_grad.size(), 3UL);
EXPECT_EQ(var_to_grad.at("b"), f::GradVarInfo(f::GradVarName("b"), 0, 2));
EXPECT_EQ(var_to_grad.at("x"), f::GradVarInfo(f::GradVarName("x"), 0, 2));
......@@ -588,7 +635,7 @@ TEST(Backward, simple_mult_op) {
EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
std::vector<std::string>({f::GradVarName("b3")}));
EXPECT_EQ(var_to_grad.size(), 6UL);
EXPECT_EQ(var_to_grad.size(), 7UL);
EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
EXPECT_EQ(var_to_grad.at("out1"),
......@@ -666,7 +713,7 @@ TEST(Backward, intermedia_var_no_grad) {
std::vector<std::string>({f::GradVarName("out1")}));
EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector<std::string>());
EXPECT_EQ(var_to_grad.size(), 3UL);
EXPECT_EQ(var_to_grad.size(), 4UL);
EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
EXPECT_EQ(var_to_grad.at("out1"),
......@@ -744,7 +791,7 @@ TEST(Backward, var_no_grad) {
EXPECT_EQ(grad_op1->Output(f::GradVarName("H")),
std::vector<std::string>({f::GradVarName("h1")}));
EXPECT_EQ(var_to_grad.size(), 3UL);
EXPECT_EQ(var_to_grad.size(), 4UL);
EXPECT_EQ(var_to_grad.at("y1"), f::GradVarInfo(f::GradVarName("y1"), 0, 3));
EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 5));
EXPECT_EQ(var_to_grad.at("h1"), f::GradVarInfo(f::GradVarName("h1"), 0, 5));
......@@ -830,7 +877,7 @@ TEST(Backward, shared_var) {
EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
std::vector<std::string>({f::GradVarName("b1")}));
EXPECT_EQ(var_to_grad.size(), 5UL);
EXPECT_EQ(var_to_grad.size(), 6UL);
EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));
EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
EXPECT_EQ(var_to_grad.at("out1"),
......@@ -863,7 +910,7 @@ TEST(Backward, half_backward) {
auto ops = block->AllOps();
ASSERT_EQ(3UL, ops.size());
EXPECT_EQ(var_to_grad.size(), 1UL);
EXPECT_EQ(var_to_grad.size(), 2UL);
EXPECT_EQ(var_to_grad.at("a"),
f::GradVarInfo(f::GradVarName("a"), 0, forward_len + 1));
}
......@@ -135,7 +135,7 @@ public:
const std::string& getName() const { return subModelName_; }
/// some finish work, like convert the weight format of MKLDNNLayers
void finish() override;
void finish();
protected:
/**
......
......@@ -104,10 +104,10 @@ class MulOpGrad : public framework::OperatorWithKernel {
auto y_dims = ctx->GetInputDim("Y");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
auto x_mat_dims =
framework::flatten_to_2d(x_dims, Attr<int>("x_num_col_dims"));
auto y_mat_dims =
framework::flatten_to_2d(y_dims, Attr<int>("y_num_col_dims"));
auto x_mat_dims = framework::flatten_to_2d(
x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
auto y_mat_dims = framework::flatten_to_2d(
y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
PADDLE_ENFORCE_EQ(
x_mat_dims[0], out_dims[0],
......
......@@ -163,6 +163,11 @@ void BindBlockDesc(py::module &m) {
return self.Var(name);
},
py::return_value_policy::reference)
.def("has_var",
[](BlockDescBind &self, py::bytes byte_name) {
std::string name = byte_name;
return self.HasVar(name);
})
.def("find_var",
[](BlockDescBind &self, py::bytes byte_name) {
std::string name = byte_name;
......
......@@ -306,6 +306,14 @@ class Block(object):
def idx(self):
return self.desc.id
def var(self, name):
if name not in self.vars:
raise ValueError("var %s not in this block" % name)
return self.vars[name]
def all_parameters(self):
return {v for k, v in self.vars.iteritems() if isinstance(v, Parameter)}
def create_var(self, *args, **kwargs):
return Variable(self, *args, **kwargs)
......@@ -314,7 +322,8 @@ class Block(object):
def create_parameter(self, *args, **kwargs):
global_block = self.program.global_block()
return Parameter(global_block, *args, **kwargs)
param = Parameter(global_block, *args, **kwargs)
return param
def append_op(self, *args, **kwargs):
op_desc = self.desc.append_op()
......@@ -392,10 +401,16 @@ class Program(object):
def global_block(self):
return self.blocks[0]
def block(self, index):
return self.blocks[index]
def current_block(self):
return self.blocks[self.current_block_idx]
def append_backward(self, target, no_grad_set):
"""
return map(param_name -> (grad_name, block_index, op_index))
"""
assert isinstance(target, Variable)
param_to_grad_info = self.desc.append_backward(target.desc, no_grad_set)
self.sync_with_cpp()
......
import paddle.v2.framework.framework as framework
__all__ = ['SGDOptimizer']
class Optimizer(object):
"""Optimizer Base class.
Define the common interface of an optimizer.
User should not use this class directly, but need to use one of it's implementation.
"""
def __init__(self):
pass
def _append_optimize_op(self, block, param_and_grad):
""" append optimize operator to block and return all the added optimize_op
"""
raise NotImplementedError()
def create_backward_pass(self, loss, parameter_list=None, no_grad_set=None):
"""
create and add gradient Operators in BlockDesc to Compute gradients of `loss`
for parameters in parameter_list
Args:
loss: an variable generated by cost function.
no_grad_set: variable that should not create gradient
parameter_list: parameters that need to compute gradient and update to optimize the lost.
Returns:
list of (parameters, gradients) pair.
"""
assert isinstance(loss, framework.Variable)
param_grad_map = loss.block.program.append_backward(loss, no_grad_set or
set())
if parameter_list is not None:
parameters = parameter_list
else:
params = loss.block.program.global_block().all_parameters()
parameters = [param.name for param in params]
params_and_grads = []
for param in parameters:
if param not in param_grad_map:
raise Exception("param %s is not in map" % param)
grad_info = param_grad_map[param]
grad_block = loss.block.program.block(grad_info[1])
if not grad_block.has_var(grad_info[0]):
raise Exception("grad block[%d] did not have grad var %s" %
grad_info[1], grad_info[0])
param_var = loss.block.var(param)
grad_var = grad_block.var(grad_info[0])
if loss.block.has_var(grad_info[0]):
params_and_grads.append((param_var, grad_var))
else:
params_and_grads.append((param_var, None))
return params_and_grads
def create_optimization_pass(self, parameters_and_grads, loss):
"""Add optimization operators to update gradients to variables.
Args:
loss: the target that this optimization is for.
parameters_and_grads: a list of (variable, gradient) pair to update.
Returns:
optmization_op_list: a list of optimization operator that will update parameter using gradient.
"""
optimize_ops = []
for param_and_grad in parameters_and_grads:
if param_and_grad[1] is not None:
optimize_op = self._append_optimize_op(loss.block,
param_and_grad)
optimize_ops.append(optimize_op)
return optimize_ops
def minimize(self, loss, parameter_list=None, no_grad_set=None):
"""Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `create_backward_pass()` and
`create_optimization_pass()` into one.
"""
params_grads = self.create_backward_pass(loss, parameter_list,
no_grad_set or set())
optimize_ops = self.create_optimization_pass(params_grads, loss)
return optimize_ops
class SGDOptimizer(Optimizer):
""" Simple SGD optimizer without any state.
"""
def __init__(self, learning_rate):
assert learning_rate is not None
super(Optimizer, self).__init__()
self.type = "sgd"
self._learning_rate = learning_rate
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
lr_shape = [1]
# create a var for learning_rate
lr = block.create_var(dtype="float32", shape=lr_shape, lod_level=0)
# create an op to init the learning_rate
init_op = block.append_op(
type="fill_constant",
outputs={"Out": lr},
attrs={"shape": lr_shape,
"value": self._learning_rate})
# create the optimize op
sgd_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"LearningRate": lr
},
outputs={"ParamOut": param_and_grad[0]},
attrs={"shape": [1],
"value": self._learning_rate})
return sgd_op
import unittest
import paddle.v2.framework.framework as framework
import paddle.v2.framework.optimizer as optimizer
class TestOptimizer(unittest.TestCase):
def test_sgd_optimizer(self):
program = framework.g_program
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
mul_out = block.create_var(
dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
mul_op = block.append_op(
type="mul",
inputs={"X": mul_x,
"Y": mul_y},
outputs={"Out": mul_out},
attrs={"x_num_col_dims": 1})
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
opts = sgd_optimizer.minimize(mul_out)
self.assertEqual(len(opts), 1)
sgd_op = opts[0]
self.assertEqual(sgd_op.type, "sgd")
if __name__ == '__main__':
unittest.main()
......@@ -34,49 +34,11 @@ class TestProgram(unittest.TestCase):
self.assertEqual(1, b.idx)
self.assertEqual(0, b.parent_idx)
def test_desc_append_backward(self):
prog = core.ProgramDesc.__create_program_desc__()
self.assertIsNotNone(prog)
block = prog.block(0)
self.assertIsNotNone(block)
mul_op_desc = block.append_op()
mul_op_desc.set_type("mul")
mul_op_desc.set_input("X", ["x1"])
mul_op_desc.set_input("Y", ["y1"])
mul_op_desc.set_output("Out", ["out1"])
sum_op_desc = block.append_op()
sum_op_desc.set_type("elementwise_add")
sum_op_desc.set_input("X", ["out1"])
sum_op_desc.set_input("Y", ["b1"])
sum_op_desc.set_output("Out", ["out2"])
target = block.var("out2")
expect_ops = [
"mul", "elementwise_add", "fill_constant", "elementwise_add_grad",
"mul_grad"
]
def grad_name(name):
return name + "@GRAD"
actual_ops = []
param_to_grad = prog.append_backward(target, set())
for var_name in ("x1", "y1", "out1", "b1"):
self.assertEqual(param_to_grad[var_name][0], grad_name(var_name))
self.assertEqual(param_to_grad[var_name][1], 0)
for op in block.all_ops():
actual_ops.append(op.type())
self.assertEqual(actual_ops, expect_ops)
def test_append_backward(self):
prog = Program.instance()
block = prog.global_block()
mul_x = block.create_parameter(
mul_x = block.create_var(
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
mul_y = block.create_var(
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
......@@ -88,7 +50,35 @@ class TestProgram(unittest.TestCase):
"Y": mul_y},
outputs={"Out": [mul_out]},
attrs={"x_num_col_dims": 1})
param_to_grad = prog.append_backward(mul_out, set())
add_y = block.create_var(
dtype="float32", shape=[5, 8], lod_level=0, name="add.y")
add_out = block.create_var(
dtype="float32", shape=[5, 8], lod_level=0, name="add.out")
add_op = block.append_op(
type="elementwise_add",
inputs={"X": mul_out,
"Y": add_y},
outputs={"Out": add_out},
attrs={"x_num_col_dims": 1})
param_to_grad = prog.append_backward(add_out, set())
def grad_name(name):
return name + "@GRAD"
for var_name in ("mul.x", "mul.y", "mul.out", "add.y", "add.out"):
self.assertEqual(param_to_grad[var_name][0], grad_name(var_name))
self.assertEqual(param_to_grad[var_name][1], 0)
expect_ops = [
"mul", "elementwise_add", "fill_constant", "elementwise_add_grad",
"mul_grad"
]
actual_ops = []
for op in block.ops:
actual_ops.append(op.type)
self.assertEqual(actual_ops, expect_ops)
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册