Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
31ddaae2
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
31ddaae2
编写于
6月 13, 2022
作者:
W
WangXi
提交者:
GitHub
6月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fused_attention fused_feedforward api support Model Tensor Parallel (#42985)
上级
360b8383
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
371 addition
and
574 deletion
+371
-574
python/paddle/fluid/tests/unittests/static_model_parallel_fused_attention.py
.../tests/unittests/static_model_parallel_fused_attention.py
+29
-174
python/paddle/fluid/tests/unittests/static_model_parallel_fused_feedforward.py
...ests/unittests/static_model_parallel_fused_feedforward.py
+25
-262
python/paddle/fluid/tests/unittests/test_fused_attention_op_api.py
...ddle/fluid/tests/unittests/test_fused_attention_op_api.py
+128
-62
python/paddle/incubate/nn/functional/fused_transformer.py
python/paddle/incubate/nn/functional/fused_transformer.py
+6
-2
python/paddle/incubate/nn/layer/fused_transformer.py
python/paddle/incubate/nn/layer/fused_transformer.py
+183
-74
未找到文件。
python/paddle/fluid/tests/unittests/static_model_parallel_fused_attention.py
浏览文件 @
31ddaae2
...
...
@@ -20,156 +20,11 @@ import paddle
import
paddle.fluid
as
fluid
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.distributed.fleet
as
fleet
import
paddle.incubate.nn.functional
as
incubate_f
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
,
check_dtype
from
paddle.fluid.dygraph.layers
import
Layer
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid
import
core
from
paddle.nn.initializer
import
Constant
from
paddle.incubate.nn
import
FusedMultiHeadAttention
paddle
.
enable_static
()
def
_set_var_distributed
(
var
):
if
var
is
None
:
return
var
.
is_distributed
=
True
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
class
ParallelFusedMultiHeadAttention
(
Layer
):
def
__init__
(
self
,
embed_dim
,
num_heads
,
dropout_rate
=
0.5
,
attn_dropout_rate
=
0.5
,
kdim
=
None
,
vdim
=
None
,
normalize_before
=
False
,
need_weights
=
False
,
qkv_weight_attr
=
None
,
qkv_bias_attr
=
None
,
linear_weight_attr
=
None
,
linear_bias_attr
=
None
,
pre_ln_scale_attr
=
None
,
pre_ln_bias_attr
=
None
,
ln_scale_attr
=
None
,
ln_bias_attr
=
None
,
epsilon
=
1e-5
,
nranks
=
1
,
ring_id
=-
1
,
name
=
None
):
super
(
ParallelFusedMultiHeadAttention
,
self
).
__init__
()
assert
embed_dim
>
0
,
(
"Expected embed_dim to be greater than 0, "
"but received {}"
.
format
(
embed_dim
))
assert
num_heads
>
0
,
(
"Expected nhead to be greater than 0, "
"but received {}"
.
format
(
num_heads
))
self
.
normalize_before
=
normalize_before
self
.
_dtype
=
self
.
_helper
.
get_default_dtype
()
self
.
_epsilon
=
epsilon
self
.
_ring_id
=
ring_id
self
.
embed_dim
=
embed_dim
self
.
num_heads
=
num_heads
self
.
head_dim
=
embed_dim
//
num_heads
self
.
kdim
=
kdim
self
.
vdim
=
vdim
self
.
need_weights
=
need_weights
assert
self
.
head_dim
*
num_heads
==
embed_dim
,
"embed_dim must be divisible by num_heads"
assert
need_weights
==
False
,
"Only support need_weight is False now."
# tensor model parallel
assert
num_heads
%
nranks
==
0
num_heads
=
num_heads
//
nranks
self
.
qkv_weight
=
self
.
create_parameter
(
shape
=
[
3
,
num_heads
,
self
.
head_dim
,
embed_dim
],
attr
=
qkv_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
qkv_bias
=
self
.
create_parameter
(
shape
=
[
3
,
num_heads
,
self
.
head_dim
],
attr
=
qkv_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
linear_weight
=
self
.
create_parameter
(
shape
=
[
num_heads
*
self
.
head_dim
,
embed_dim
],
attr
=
linear_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
linear_bias
=
self
.
create_parameter
(
shape
=
[
embed_dim
],
attr
=
linear_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
# tensor model parallel
if
nranks
>
1
:
assert
ring_id
!=
-
1
# column parallel
_set_var_distributed
(
self
.
qkv_weight
)
_set_var_distributed
(
self
.
qkv_bias
)
# row parallel
_set_var_distributed
(
self
.
linear_weight
)
if
normalize_before
:
self
.
pre_ln_scale
=
self
.
create_parameter
(
attr
=
pre_ln_scale_attr
,
shape
=
[
embed_dim
],
default_initializer
=
Constant
(
value
=
1.0
))
self
.
pre_ln_bias
=
self
.
create_parameter
(
attr
=
pre_ln_bias_attr
,
shape
=
[
embed_dim
],
is_bias
=
True
)
self
.
ln_scale
=
None
self
.
ln_bias
=
None
else
:
self
.
pre_ln_scale
=
None
self
.
pre_ln_bias
=
None
self
.
ln_scale
=
self
.
create_parameter
(
attr
=
ln_scale_attr
,
shape
=
[
embed_dim
],
default_initializer
=
Constant
(
value
=
1.0
))
self
.
ln_bias
=
self
.
create_parameter
(
attr
=
ln_bias_attr
,
shape
=
[
embed_dim
],
is_bias
=
True
)
self
.
dropout_rate
=
dropout_rate
self
.
attn_dropout_rate
=
attn_dropout_rate
self
.
name
=
name
def
forward
(
self
,
query
,
key
=
None
,
value
=
None
,
attn_mask
=
None
,
cache
=
None
):
out
=
incubate_f
.
fused_multi_head_attention
(
x
=
query
,
qkv_weight
=
self
.
qkv_weight
,
linear_weight
=
self
.
linear_weight
,
pre_layer_norm
=
self
.
normalize_before
,
pre_ln_scale
=
self
.
pre_ln_scale
,
pre_ln_bias
=
self
.
pre_ln_bias
,
ln_scale
=
self
.
ln_scale
,
ln_bias
=
self
.
ln_bias
,
pre_ln_epsilon
=
self
.
_epsilon
,
qkv_bias
=
self
.
qkv_bias
,
linear_bias
=
self
.
linear_bias
,
attn_mask
=
attn_mask
,
dropout_rate
=
self
.
dropout_rate
,
attn_dropout_rate
=
self
.
attn_dropout_rate
,
ln_epsilon
=
self
.
_epsilon
,
training
=
self
.
training
,
ring_id
=
self
.
_ring_id
,
name
=
self
.
name
)
return
out
def
get_param_attr
(
weight
,
bias
):
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
weight
))
...
...
@@ -208,40 +63,40 @@ def create_model(data, rank):
qkv_w_attr
,
qkv_b_attr
=
get_param_attr
(
col_qkv_w
,
col_qkv_b
)
linear_w_attr
,
linear_b_attr
=
get_param_attr
(
row_linear_w
,
linear_b
)
attn
=
Parallel
FusedMultiHeadAttention
(
hidden
,
n_head
,
dropout_rate
=
0.0
,
attn_dropout_rate
=
0.0
,
normalize_before
=
False
,
qkv_weight_attr
=
qkv_w_attr
,
qkv_bias_attr
=
qkv_b_attr
,
linear_weight_attr
=
linear_w_attr
,
linear_bias_attr
=
linear_b_attr
,
pre_ln_scale_attr
=
pre_ln_w_attr
,
pre_ln_bias_attr
=
pre_ln_b_attr
,
ln_scale_attr
=
pre_ln_w_attr
,
ln_bias_attr
=
pre_ln_b_attr
,
nranks
=
MODEL_PARALLEL_SIZE
,
ring_id
=
0
)
attn
=
FusedMultiHeadAttention
(
hidden
,
n_head
,
dropout_rate
=
0.0
,
attn_dropout_rate
=
0.0
,
normalize_before
=
False
,
qkv_weight_attr
=
qkv_w_attr
,
qkv_bias_attr
=
qkv_b_attr
,
linear_weight_attr
=
linear_w_attr
,
linear_bias_attr
=
linear_b_attr
,
pre_ln_scale_attr
=
pre_ln_w_attr
,
pre_ln_bias_attr
=
pre_ln_b_attr
,
ln_scale_attr
=
pre_ln_w_attr
,
ln_bias_attr
=
pre_ln_b_attr
,
nranks
=
MODEL_PARALLEL_SIZE
,
ring_id
=
0
)
result
=
attn
(
data
)
else
:
pre_ln_w_attr
,
pre_ln_b_attr
=
get_param_attr
(
pre_ln_w
,
pre_ln_b
)
qkv_w_attr
,
qkv_b_attr
=
get_param_attr
(
qkv_w
,
qkv_b
)
linear_w_attr
,
linear_b_attr
=
get_param_attr
(
linear_w
,
linear_b
)
attn
=
Parallel
FusedMultiHeadAttention
(
hidden
,
n_head
,
dropout_rate
=
0.0
,
attn_dropout_rate
=
0.0
,
normalize_before
=
False
,
qkv_weight_attr
=
qkv_w_attr
,
qkv_bias_attr
=
qkv_b_attr
,
linear_weight_attr
=
linear_w_attr
,
linear_bias_attr
=
linear_b_attr
,
pre_ln_scale_attr
=
pre_ln_w_attr
,
pre_ln_bias_attr
=
pre_ln_b_attr
,
ln_scale_attr
=
pre_ln_w_attr
,
ln_bias_attr
=
pre_ln_b_attr
)
attn
=
FusedMultiHeadAttention
(
hidden
,
n_head
,
dropout_rate
=
0.0
,
attn_dropout_rate
=
0.0
,
normalize_before
=
False
,
qkv_weight_attr
=
qkv_w_attr
,
qkv_bias_attr
=
qkv_b_attr
,
linear_weight_attr
=
linear_w_attr
,
linear_bias_attr
=
linear_b_attr
,
pre_ln_scale_attr
=
pre_ln_w_attr
,
pre_ln_bias_attr
=
pre_ln_b_attr
,
ln_scale_attr
=
pre_ln_w_attr
,
ln_bias_attr
=
pre_ln_b_attr
)
result
=
attn
(
data
)
predict
=
paddle
.
sum
(
result
)
...
...
python/paddle/fluid/tests/unittests/static_model_parallel_fused_feedforward.py
浏览文件 @
31ddaae2
...
...
@@ -20,11 +20,7 @@ import paddle
import
paddle.fluid
as
fluid
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.distributed.fleet
as
fleet
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
,
check_dtype
from
paddle.fluid.dygraph.layers
import
Layer
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.nn.initializer
import
Constant
from
paddle.incubate.nn
import
FusedFeedForward
paddle
.
enable_static
()
...
...
@@ -34,239 +30,6 @@ IN_SIZE = 2 * MODEL_PARALLEL_SIZE
OUT_SIZE
=
2
*
MODEL_PARALLEL_SIZE
def
fused_feedforward
(
x
,
linear1_weight
,
linear2_weight
,
linear1_bias
=
None
,
linear2_bias
=
None
,
ln1_scale
=
None
,
ln1_bias
=
None
,
ln2_scale
=
None
,
ln2_bias
=
None
,
dropout1_rate
=
0.5
,
dropout2_rate
=
0.5
,
activation
=
"relu"
,
ln1_epsilon
=
1e-5
,
ln2_epsilon
=
1e-5
,
pre_layer_norm
=
False
,
training
=
True
,
mode
=
'upscale_in_train'
,
ring_id
=-
1
,
name
=
None
):
seed
=
None
if
mode
not
in
(
'downscale_in_infer'
,
'upscale_in_train'
):
raise
ValueError
(
"mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
)
mode
=
'downgrade_in_infer'
if
mode
==
'downscale_in_infer'
else
mode
#semantic transfer
helper
=
LayerHelper
(
"fused_feedforward"
)
dtype
=
x
.
dtype
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'fused_feedforward'
)
check_dtype
(
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
'fused_feedforward'
)
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
dropout1_mask
=
helper
.
create_variable_for_type_inference
(
'uint8'
,
stop_gradient
=
True
)
dropout2_mask
=
helper
.
create_variable_for_type_inference
(
'uint8'
,
stop_gradient
=
True
)
ln1_mean
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
ln1_variance
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
ln2_mean
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
ln2_variance
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
linear1_out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
ln1_out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
dropout1_out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
dropout2_out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
,
stop_gradient
=
True
)
if
(
seed
is
None
or
seed
==
0
)
and
helper
.
main_program
.
random_seed
!=
0
:
seed
=
helper
.
main_program
.
random_seed
helper
.
append_op
(
type
=
'fused_feedforward'
,
inputs
=
{
'X'
:
x
,
'Linear1Weight'
:
linear1_weight
,
'Linear1Bias'
:
linear1_bias
,
'Linear2Weight'
:
linear2_weight
,
'Linear2Bias'
:
linear2_bias
,
'Ln1Scale'
:
ln1_scale
,
'Ln1Bias'
:
ln1_bias
,
'Ln2Scale'
:
ln2_scale
,
'Ln2Bias'
:
ln2_bias
,
},
outputs
=
{
'Out'
:
out
,
'Dropout1Mask'
:
dropout1_mask
,
'Dropout2Mask'
:
dropout2_mask
,
'Ln1Mean'
:
ln1_mean
,
'Ln1Variance'
:
ln1_variance
,
'Ln2Mean'
:
ln2_mean
,
'Ln2Variance'
:
ln2_variance
,
'Linear1Out'
:
linear1_out
,
'Ln1Out'
:
ln1_out
,
'Dropout1Out'
:
dropout1_out
,
'Dropout2Out'
:
dropout2_out
,
},
attrs
=
{
'dropout1_rate'
:
dropout1_rate
,
'dropout2_rate'
:
dropout2_rate
,
'act_method'
:
activation
,
'pre_layer_norm'
:
pre_layer_norm
,
'ln1_epsilon'
:
ln1_epsilon
,
'ln2_epsilon'
:
ln2_epsilon
,
'dropout1_is_test'
:
not
training
,
'dropout2_is_test'
:
not
training
,
'dropout1_fix_seed'
:
seed
is
not
None
,
'dropout2_fix_seed'
:
seed
is
not
None
,
'dropout1_seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout2_seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout1_implementation'
:
mode
,
'dropout2_implementation'
:
mode
,
'ring_id'
:
ring_id
,
})
return
out
def
_set_var_distributed
(
var
):
if
var
is
None
:
return
var
.
is_distributed
=
True
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
class
ParallelFusedFeedForward
(
Layer
):
def
__init__
(
self
,
d_model
,
dim_feedforward
,
dropout_rate
=
0.1
,
epsilon
=
1e-05
,
activation
=
"relu"
,
act_dropout_rate
=
None
,
normalize_before
=
False
,
linear1_weight_attr
=
None
,
linear1_bias_attr
=
None
,
linear2_weight_attr
=
None
,
linear2_bias_attr
=
None
,
ln1_scale_attr
=
None
,
ln1_bias_attr
=
None
,
ln2_scale_attr
=
None
,
ln2_bias_attr
=
None
,
nranks
=
1
,
ring_id
=-
1
,
name
=
None
):
super
(
ParallelFusedFeedForward
,
self
).
__init__
()
assert
d_model
>
0
,
(
"Expected d_model to be greater than 0, but received {}"
.
format
(
d_model
))
assert
dim_feedforward
>
0
,
(
"Expected dim_feedforward to be greater than 0, but received {}"
.
format
(
dim_feedforward
))
self
.
_dtype
=
self
.
_helper
.
get_default_dtype
()
self
.
_d_model
=
d_model
assert
dim_feedforward
%
nranks
==
0
dim_feedforward
=
dim_feedforward
//
nranks
self
.
_dim_feedforward
=
dim_feedforward
self
.
_dropout_rate
=
dropout_rate
self
.
_act_dropout_rate
=
dropout_rate
if
act_dropout_rate
is
None
else
act_dropout_rate
self
.
_act_method
=
activation
self
.
_normalize_before
=
normalize_before
self
.
_epsilon
=
epsilon
self
.
_ring_id
=
ring_id
self
.
_linear1_weight
=
self
.
create_parameter
(
shape
=
[
d_model
,
dim_feedforward
],
attr
=
linear1_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_linear1_bias
=
self
.
create_parameter
(
shape
=
[
dim_feedforward
],
attr
=
linear1_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
_linear2_weight
=
self
.
create_parameter
(
shape
=
[
dim_feedforward
,
d_model
],
attr
=
linear2_weight_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_linear2_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
linear2_bias_attr
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
if
nranks
>
1
:
assert
ring_id
!=
-
1
# column parallel
_set_var_distributed
(
self
.
_linear1_weight
)
_set_var_distributed
(
self
.
_linear1_bias
)
_set_var_distributed
(
self
.
_linear2_weight
)
if
normalize_before
:
self
.
_ln1_scale
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln1_scale_attr
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
self
.
_ln1_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln1_bias_attr
,
is_bias
=
True
)
self
.
_ln2_scale
=
None
self
.
_ln2_bias
=
None
else
:
self
.
_ln1_bias
=
None
self
.
_ln2_bias
=
None
self
.
_ln2_scale
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln2_scale_attr
,
is_bias
=
False
,
default_initializer
=
Constant
(
1.0
))
self
.
_ln2_bias
=
self
.
create_parameter
(
shape
=
[
d_model
],
attr
=
ln2_bias_attr
,
is_bias
=
True
)
self
.
name
=
name
def
forward
(
self
,
src
,
cache
=
None
):
out
=
fused_feedforward
(
src
,
self
.
_linear1_weight
,
self
.
_linear2_weight
,
self
.
_linear1_bias
,
self
.
_linear2_bias
,
self
.
_ln1_scale
,
self
.
_ln1_bias
,
self
.
_ln2_scale
,
self
.
_ln2_bias
,
dropout1_rate
=
self
.
_act_dropout_rate
,
dropout2_rate
=
self
.
_dropout_rate
,
activation
=
self
.
_act_method
,
ln1_epsilon
=
self
.
_epsilon
,
ln2_epsilon
=
self
.
_epsilon
,
pre_layer_norm
=
self
.
_normalize_before
,
training
=
self
.
training
,
ring_id
=
self
.
_ring_id
,
name
=
self
.
name
)
return
out
def
get_param_attr
(
weight
,
bias
):
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
weight
))
...
...
@@ -295,19 +58,19 @@ def create_model(data, rank):
w0_attr
,
b0_attr
=
get_param_attr
(
col_w0
,
col_b0
)
w1_attr
,
b1_attr
=
get_param_attr
(
row_w1
,
b1
)
ffn
=
Parallel
FusedFeedForward
(
IN_SIZE
,
OUT_SIZE
,
dropout_rate
=
0.0
,
activation
=
'gelu'
,
normalize_before
=
True
,
linear1_weight_attr
=
w0_attr
,
linear1_bias_attr
=
b0_attr
,
linear2_weight_attr
=
w1_attr
,
linear2_bias_attr
=
b1_attr
,
ln1_scale_attr
=
ln_w_attr
,
ln1_bias_attr
=
ln_b_attr
,
nranks
=
MODEL_PARALLEL_SIZE
,
ring_id
=
0
)
ffn
=
FusedFeedForward
(
IN_SIZE
,
OUT_SIZE
,
dropout_rate
=
0.0
,
activation
=
'gelu'
,
normalize_before
=
True
,
linear1_weight_attr
=
w0_attr
,
linear1_bias_attr
=
b0_attr
,
linear2_weight_attr
=
w1_attr
,
linear2_bias_attr
=
b1_attr
,
ln1_scale_attr
=
ln_w_attr
,
ln1_bias_attr
=
ln_b_attr
,
nranks
=
MODEL_PARALLEL_SIZE
,
ring_id
=
0
)
#ffn.eval()
result
=
ffn
(
data
)
else
:
...
...
@@ -315,17 +78,17 @@ def create_model(data, rank):
w0_attr
,
b0_attr
=
get_param_attr
(
w0
,
b0
)
w1_attr
,
b1_attr
=
get_param_attr
(
w1
,
b1
)
ffn
=
Parallel
FusedFeedForward
(
IN_SIZE
,
OUT_SIZE
,
dropout_rate
=
0.0
,
activation
=
'gelu'
,
normalize_before
=
True
,
linear1_weight_attr
=
w0_attr
,
linear1_bias_attr
=
b0_attr
,
linear2_weight_attr
=
w1_attr
,
linear2_bias_attr
=
b1_attr
,
ln1_scale_attr
=
ln_w_attr
,
ln1_bias_attr
=
ln_b_attr
)
ffn
=
FusedFeedForward
(
IN_SIZE
,
OUT_SIZE
,
dropout_rate
=
0.0
,
activation
=
'gelu'
,
normalize_before
=
True
,
linear1_weight_attr
=
w0_attr
,
linear1_bias_attr
=
b0_attr
,
linear2_weight_attr
=
w1_attr
,
linear2_bias_attr
=
b1_attr
,
ln1_scale_attr
=
ln_w_attr
,
ln1_bias_attr
=
ln_b_attr
)
#ffn.eval()
result
=
ffn
(
data
)
...
...
python/paddle/fluid/tests/unittests/test_fused_attention_op_api.py
浏览文件 @
31ddaae2
...
...
@@ -83,7 +83,7 @@ def compute_reference(pre_layer_norm, query, attn_mask, ln_scale, ln_bias,
if
ln_bias
is
None
:
has_bias
=
False
if
(
pre_layer_norm
)
:
if
pre_layer_norm
:
ln_out
=
layer_norm
(
query
,
True
,
has_bias
,
ln_scale
,
ln_bias
)
num_head
=
qkv_weight
.
shape
[
1
]
...
...
@@ -97,7 +97,7 @@ def compute_reference(pre_layer_norm, query, attn_mask, ln_scale, ln_bias,
if
qkv_bias
is
not
None
:
qkv_bias
=
qkv_bias
.
reshape
(
qkv_bias
.
shape
[
0
]
*
qkv_bias
.
shape
[
1
]
*
qkv_bias
.
shape
[
2
])
if
(
pre_layer_norm
)
:
if
pre_layer_norm
:
ln_out
=
ln_out
.
reshape
(
batch_size
*
seq_len
,
embed_dim
)
qkv
=
fc
(
ln_out
,
qkv_weight
)
if
qkv_bias
is
not
None
:
...
...
@@ -239,12 +239,12 @@ class TestFusedAttentionAPI(unittest.TestCase):
attn_mask_tensor
=
paddle
.
to_tensor
(
self
.
attn_mask
)
else
:
attn_mask_tensor
=
None
fused_attn
=
FusedMultiHeadAttention
(
self
.
embed_dim
,
self
.
num_heads
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
self
.
kdi
m
,
self
.
vdim
,
self
.
pre_layer_norm
,
self
.
need_weight
,
self
.
weight
_attr
,
self
.
bias_attr
)
fused_attn
=
FusedMultiHeadAttention
(
self
.
embed_dim
,
self
.
num_heads
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
self
.
kdim
,
self
.
vdim
,
self
.
pre_layer_nor
m
,
self
.
need_weight
,
self
.
weight_attr
,
self
.
bias_attr
,
self
.
weight_attr
,
self
.
bias_attr
,
self
.
weight_attr
,
self
.
bias
_attr
,
self
.
weight_attr
,
self
.
bias_attr
)
if
self
.
bias_attr
is
not
False
:
qkv_bias
=
np
.
random
.
random
(
fused_attn
.
qkv_bias
.
shape
).
astype
(
'float32'
)
...
...
@@ -260,13 +260,19 @@ class TestFusedAttentionAPI(unittest.TestCase):
if
self
.
bias_attr
is
not
False
:
fused_attn_qkv_bias
=
fused_attn
.
qkv_bias
.
numpy
()
fused_attn_linear_bias
=
fused_attn
.
linear_bias
.
numpy
()
fused_attn_pre_ln_bias
=
fused_attn
.
pre_ln_bias
.
numpy
()
fused_attn_ln_bias
=
fused_attn
.
ln_bias
.
numpy
()
if
self
.
pre_layer_norm
:
fused_attn_pre_ln_bias
=
fused_attn
.
pre_ln_bias
.
numpy
()
fused_attn_ln_bias
=
None
else
:
fused_attn_pre_ln_bias
=
None
fused_attn_ln_bias
=
fused_attn
.
ln_bias
.
numpy
()
ref_out
=
compute_reference
(
self
.
pre_layer_norm
,
self
.
query
,
self
.
attn_mask
,
fused_attn
.
pre_ln_scale
.
numpy
(),
fused_attn_pre_ln_bias
,
fused_attn
.
ln_scale
.
numpy
(),
fused_attn_ln_bias
,
fused_attn
.
pre_ln_scale
.
numpy
()
if
self
.
pre_layer_norm
else
None
,
fused_attn_pre_ln_bias
,
fused_attn
.
ln_scale
.
numpy
()
if
not
self
.
pre_layer_norm
else
None
,
fused_attn_ln_bias
,
fused_attn
.
qkv_weight
.
numpy
(),
fused_attn_qkv_bias
,
fused_attn
.
linear_weight
.
numpy
(),
fused_attn_linear_bias
)
np
.
testing
.
assert_allclose
(
ref_out
,
...
...
@@ -275,12 +281,12 @@ class TestFusedAttentionAPI(unittest.TestCase):
atol
=
self
.
atol
)
def
run_static
(
self
):
fused_attn
=
FusedMultiHeadAttention
(
self
.
embed_dim
,
self
.
num_heads
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
self
.
kdi
m
,
self
.
vdim
,
self
.
pre_layer_norm
,
self
.
need_weight
,
self
.
weight
_attr
,
self
.
bias_attr
)
fused_attn
=
FusedMultiHeadAttention
(
self
.
embed_dim
,
self
.
num_heads
,
self
.
dropout_prob
,
self
.
attn_dropout_prob
,
self
.
kdim
,
self
.
vdim
,
self
.
pre_layer_nor
m
,
self
.
need_weight
,
self
.
weight_attr
,
self
.
bias_attr
,
self
.
weight_attr
,
self
.
bias_attr
,
self
.
weight_attr
,
self
.
bias
_attr
,
self
.
weight_attr
,
self
.
bias_attr
)
x
=
paddle
.
static
.
data
(
name
=
'X'
,
...
...
@@ -304,58 +310,118 @@ class TestFusedAttentionAPI(unittest.TestCase):
qkv_bias
=
None
linear_bias
=
None
ln_scale
=
None
ln_2_scale
=
None
ln_bias
=
None
ln_2_bias
=
None
if
self
.
has_attn_mask
:
if
self
.
bias_attr
is
False
:
out
,
qkv_weight
,
out_linear_weight
,
ln_scale
,
ln_2_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
ln_scale
])
if
self
.
pre_layer_norm
:
out
,
qkv_weight
,
out_linear_weight
,
ln_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
pre_ln_scale
,
])
else
:
out
,
qkv_weight
,
out_linear_weight
,
ln_2_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
ln_scale
])
else
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
,
ln_2_scale
,
ln_2_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
pre_ln_bias
,
fused_attn
.
ln_scale
,
fused_attn
.
ln_bias
])
if
self
.
pre_layer_norm
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
pre_ln_bias
,
])
else
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_2_scale
,
ln_2_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
"SrcMask"
:
self
.
attn_mask
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
ln_scale
,
fused_attn
.
ln_bias
])
else
:
if
self
.
bias_attr
is
False
:
out
,
qkv_weight
,
out_linear_weight
,
ln_scale
,
ln_2_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
ln_scale
])
if
self
.
pre_layer_norm
:
out
,
qkv_weight
,
out_linear_weight
,
ln_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
pre_ln_scale
,
])
else
:
out
,
qkv_weight
,
out_linear_weight
,
ln_2_scale
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
linear_weight
,
fused_attn
.
ln_scale
])
else
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
,
ln_2_scale
,
ln_2_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
pre_ln_bias
,
fused_attn
.
ln_scale
,
fused_attn
.
ln_bias
])
if
self
.
pre_layer_norm
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
pre_ln_scale
,
fused_attn
.
pre_ln_bias
,
])
else
:
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_2_scale
,
ln_2_bias
=
exe
.
run
(
paddle
.
static
.
default_main_program
(),
feed
=
{
"X"
:
self
.
query
,
},
fetch_list
=
[
final_out
,
fused_attn
.
qkv_weight
,
fused_attn
.
qkv_bias
,
fused_attn
.
linear_weight
,
fused_attn
.
linear_bias
,
fused_attn
.
ln_scale
,
fused_attn
.
ln_bias
])
return
out
,
qkv_weight
,
qkv_bias
,
out_linear_weight
,
linear_bias
,
ln_scale
,
ln_bias
,
ln_2_scale
,
ln_2_bias
def
test_static_api
(
self
):
...
...
python/paddle/incubate/nn/functional/fused_transformer.py
浏览文件 @
31ddaae2
...
...
@@ -45,6 +45,7 @@ def fused_feedforward(x,
pre_layer_norm
=
False
,
training
=
True
,
mode
=
'upscale_in_train'
,
ring_id
=-
1
,
name
=
None
):
r
"""
This is a fusion operator to compute feed forward layer in transformer model architecture.
...
...
@@ -88,6 +89,7 @@ def fused_feedforward(x,
- train: out = input * mask
- inference: out = input * (1.0 - p)
ring_id (int, optional): For distributed forward in tensor model parallel, only support NCCL. Default is -1, means not using tensor parallel.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
...
...
@@ -132,7 +134,8 @@ def fused_feedforward(x,
"dropout1_fix_seed"
,
seed
is
not
None
,
"dropout2_fix_seed"
,
seed
is
not
None
,
"dropout1_seed"
,
seed
if
seed
is
not
None
else
0
,
"dropout2_seed"
,
seed
if
seed
is
not
None
else
0
,
'dropout1_implementation'
,
mode
,
'dropout2_implementation'
,
mode
)
'dropout1_implementation'
,
mode
,
'dropout2_implementation'
,
mode
,
'ring_id'
,
ring_id
)
return
out
helper
=
LayerHelper
(
"fused_feedforward"
)
...
...
@@ -206,7 +209,8 @@ def fused_feedforward(x,
'dropout1_seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout2_seed'
:
seed
if
seed
is
not
None
else
0
,
'dropout1_implementation'
:
mode
,
'dropout2_implementation'
:
mode
'dropout2_implementation'
:
mode
,
'ring_id'
:
ring_id
,
})
return
out
...
...
python/paddle/incubate/nn/layer/fused_transformer.py
浏览文件 @
31ddaae2
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录