<trclass="field-even field"><thclass="field-name">Raises:</th><tdclass="field-body"><pclass="first last"><codeclass="xref py py-exc docutils literal"><spanclass="pre">ValueError</span></code>– If rank of input tensor is less than 2.</p>
</td>
</tr>
</tbody>
</table>
<p>This function can take in multiple inputs and performs the Fully Connected
function (linear transformation) on top of each of them.
So for input x, the output will be : Wx + b. Where W is the parameter,
b the bias and x is the input.</p>
<p>The function also applies an activation (non-linearity) on top of the
output, if activation is passed in the input.</p>
<p>All the input variables of this function are passed in as local variables
<li><strong>is_sparse</strong> (<em>bool</em>) – Boolean flag that specifying whether the input is sparse</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">Returns:</th><tdclass="field-body"><pclass="first">The tensor variable storing the embeddings of the supplied inputs.</p>
<li><strong>is_sparse</strong> (<em>bool</em>) – Boolean flag that specifying whether the input is sparse</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">Returns:</th><tdclass="field-body"><pclass="first">The tensor variable storing the embeddings of the supplied inputs.</p>
<trclass="field-even field"><thclass="field-name">Raises:</th><tdclass="field-body"><pclass="first last"><codeclass="xref py py-exc docutils literal"><spanclass="pre">ValueError</span></code>– If rank of input tensor is less than 2.</p>
</td>
</tr>
</tbody>
</table>
<p>This function can take in multiple inputs and performs the Fully Connected
function (linear transformation) on top of each of them.
So for input x, the output will be : Wx + b. Where W is the parameter,
b the bias and x is the input.</p>
<p>The function also applies an activation (non-linearity) on top of the
output, if activation is passed in the input.</p>
<p>All the input variables of this function are passed in as local variables
<li><strong>is_sparse</strong> (<em>bool</em>) – Boolean flag that specifying whether the input is sparse</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">返回:</th><tdclass="field-body"><pclass="first">The tensor variable storing the embeddings of the supplied inputs.</p>
<li><strong>is_sparse</strong> (<em>bool</em>) – Boolean flag that specifying whether the input is sparse</li>
<li><strong>param_attr</strong> (<em>ParamAttr</em>) – Parameters for this layer</li>
<li><strong>dtype</strong> (<em>np.dtype|core.DataType|str</em>) – The type of data : float32, float_16, int etc</li>
</ul>
</td>
</tr>
<trclass="field-even field"><thclass="field-name">返回:</th><tdclass="field-body"><pclass="first">The tensor variable storing the embeddings of the supplied inputs.</p>