Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
30ab4fae
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
30ab4fae
编写于
9月 14, 2017
作者:
Q
qingqing01
提交者:
GitHub
9月 14, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4083 from qingqing01/lod_tensor2
Using LoDTensor instead of Tensor in every operator.
上级
654344b9
2cfa7c41
变更
37
隐藏空白更改
内联
并排
Showing
37 changed file
with
459 addition
and
185 deletion
+459
-185
paddle/framework/lod_tensor.h
paddle/framework/lod_tensor.h
+4
-8
paddle/framework/lod_tensor_test.cc
paddle/framework/lod_tensor_test.cc
+20
-25
paddle/framework/lod_tensor_test.cu
paddle/framework/lod_tensor_test.cu
+2
-4
paddle/framework/operator.cc
paddle/framework/operator.cc
+42
-0
paddle/framework/operator.h
paddle/framework/operator.h
+45
-0
paddle/operators/accuracy_op.cc
paddle/operators/accuracy_op.cc
+1
-1
paddle/operators/add_op.cc
paddle/operators/add_op.cc
+2
-1
paddle/operators/concat_op.cc
paddle/operators/concat_op.cc
+1
-1
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+7
-5
paddle/operators/elementwise_mul_op.cc
paddle/operators/elementwise_mul_op.cc
+5
-3
paddle/operators/fill_zeros_like_op.cc
paddle/operators/fill_zeros_like_op.cc
+1
-1
paddle/operators/gather_op.cc
paddle/operators/gather_op.cc
+2
-2
paddle/operators/gaussian_random_op.cc
paddle/operators/gaussian_random_op.cc
+1
-1
paddle/operators/lookup_table_op.cc
paddle/operators/lookup_table_op.cc
+3
-2
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+2
-2
paddle/operators/minus_op.cc
paddle/operators/minus_op.cc
+1
-1
paddle/operators/mul_op.cc
paddle/operators/mul_op.cc
+7
-3
paddle/operators/onehot_cross_entropy_op.cc
paddle/operators/onehot_cross_entropy_op.cc
+2
-2
paddle/operators/pad_op.cc
paddle/operators/pad_op.cc
+5
-4
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+10
-8
paddle/operators/reshape_op.cc
paddle/operators/reshape_op.cc
+2
-2
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+12
-7
paddle/operators/rowwise_add_op.cc
paddle/operators/rowwise_add_op.cc
+3
-3
paddle/operators/scale_op.cc
paddle/operators/scale_op.cc
+1
-1
paddle/operators/scatter_op.cc
paddle/operators/scatter_op.cc
+6
-3
paddle/operators/sequence_avg_pool_op.cc
paddle/operators/sequence_avg_pool_op.cc
+90
-0
paddle/operators/sequence_avg_pool_op.cu
paddle/operators/sequence_avg_pool_op.cu
+25
-0
paddle/operators/sequence_avg_pool_op.h
paddle/operators/sequence_avg_pool_op.h
+81
-0
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+5
-4
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+3
-2
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+3
-2
paddle/operators/squared_l2_distance_op.cc
paddle/operators/squared_l2_distance_op.cc
+6
-4
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+3
-2
paddle/operators/top_k_op.cc
paddle/operators/top_k_op.cc
+2
-2
paddle/operators/uniform_random_op.cc
paddle/operators/uniform_random_op.cc
+1
-1
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+9
-21
python/paddle/v2/framework/tests/test_tensor.py
python/paddle/v2/framework/tests/test_tensor.py
+44
-57
未找到文件。
paddle/framework/lod_tensor.h
浏览文件 @
30ab4fae
...
...
@@ -51,18 +51,15 @@ bool operator==(const LoD& a, const LoD& b);
* LoDTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/
class
LoDTensor
{
class
LoDTensor
:
public
Tensor
{
public:
LoDTensor
()
{}
LoDTensor
(
const
LoD
&
lod
,
Tensor
*
t
)
:
lod_
(
lod
),
tensor_
(
t
)
{}
void
set_lod
(
const
LoD
&
lod
)
{
lod_
=
lod
;
}
void
set_tensor
(
Tensor
*
tensor
)
{
tensor_
=
tensor
;
}
explicit
LoDTensor
(
const
LoD
&
lod
)
:
lod_
(
lod
)
{}
Tensor
&
tensor
()
{
return
*
tensor_
;
}
void
set_lod
(
const
LoD
&
lod
)
{
lod_
=
lod
;
}
LoD
lod
()
{
return
lod_
;
}
LoD
lod
()
const
{
return
lod_
;
}
/*
* Get a element from LoD.
...
...
@@ -104,7 +101,6 @@ class LoDTensor {
private:
LoD
lod_
;
Tensor
*
tensor_
;
// not owned
};
}
// namespace framework
}
// namespace paddle
paddle/framework/lod_tensor_test.cc
浏览文件 @
30ab4fae
...
...
@@ -36,69 +36,64 @@ class LoDTensorTester : public ::testing::Test {
ASSERT_EQ
(
lod
.
size
(),
3UL
);
tensor
.
Resize
({
20
/*batch size*/
,
128
/*dim*/
});
lod_tensor_
.
Resize
({
20
/*batch size*/
,
128
/*dim*/
});
// malloc memory
tensor
.
mutable_data
<
float
>
(
place
);
lod_tensor_
.
mutable_data
<
float
>
(
place
);
lod_tensor
.
set_lod
(
lod
);
lod_tensor
.
set_tensor
(
&
tensor
);
lod_tensor_
.
set_lod
(
lod
);
}
protected:
platform
::
CPUPlace
place
;
Tensor
tensor
;
LoDTensor
lod_tensor
;
LoDTensor
lod_tensor_
;
};
TEST_F
(
LoDTensorTester
,
NumLevels
)
{
ASSERT_EQ
(
lod_tensor
.
NumLevels
(),
3UL
);
}
TEST_F
(
LoDTensorTester
,
NumLevels
)
{
ASSERT_EQ
(
lod_tensor
_
.
NumLevels
(),
3UL
);
}
TEST_F
(
LoDTensorTester
,
NumElements
)
{
ASSERT_EQ
(
lod_tensor
.
NumElements
(
0
),
2UL
);
ASSERT_EQ
(
lod_tensor
.
NumElements
(
1
),
4UL
);
ASSERT_EQ
(
lod_tensor
.
NumElements
(
2
),
8UL
);
ASSERT_EQ
(
lod_tensor
_
.
NumElements
(
0
),
2UL
);
ASSERT_EQ
(
lod_tensor
_
.
NumElements
(
1
),
4UL
);
ASSERT_EQ
(
lod_tensor
_
.
NumElements
(
2
),
8UL
);
}
TEST_F
(
LoDTensorTester
,
SliceLevels
)
{
// slice 1 level
for
(
size_t
level
=
0
;
level
<
3UL
;
++
level
)
{
LoDTensor
new_lod_tensor
=
lod_tensor
;
LoDTensor
new_lod_tensor
=
lod_tensor
_
;
new_lod_tensor
.
SliceLevels
(
level
,
level
+
1
);
ASSERT_EQ
(
new_lod_tensor
.
NumLevels
(),
1UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
lod_tensor
.
NumElements
(
level
));
ASSERT_EQ
(
new_lod_tensor
.
tensor
().
data
<
float
>
(),
lod_tensor
.
tensor
().
data
<
float
>
());
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
lod_tensor_
.
NumElements
(
level
));
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
(),
lod_tensor_
.
data
<
float
>
());
}
// slice 2 level
for
(
size_t
level
=
0
;
level
<
2UL
;
++
level
)
{
LoDTensor
new_lod_tensor
=
lod_tensor
;
LoDTensor
new_lod_tensor
=
lod_tensor
_
;
new_lod_tensor
.
SliceLevels
(
level
,
level
+
2
);
ASSERT_EQ
(
new_lod_tensor
.
NumLevels
(),
2UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
lod_tensor
.
NumElements
(
level
));
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
lod_tensor
.
NumElements
(
level
+
1
));
ASSERT_EQ
(
new_lod_tensor
.
tensor
().
data
<
float
>
(),
lod_tensor
.
tensor
()
.
data
<
float
>
());
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
lod_tensor
_
.
NumElements
(
level
));
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
lod_tensor_
.
NumElements
(
level
+
1
));
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
(),
lod_tensor_
.
data
<
float
>
());
}
}
TEST_F
(
LoDTensorTester
,
SliceInLevel
)
{
size_t
level
=
0
;
LoDTensor
new_lod_tensor
=
lod_tensor
;
LoDTensor
new_lod_tensor
=
lod_tensor
_
;
new_lod_tensor
.
SliceInLevel
(
level
,
0
,
2
);
EXPECT_EQ
(
new_lod_tensor
.
NumLevels
(),
3UL
);
EXPECT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
2UL
);
EXPECT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
4UL
);
EXPECT_EQ
(
new_lod_tensor
.
NumElements
(
2
),
8UL
);
ASSERT_EQ
(
new_lod_tensor
.
tensor
().
data
<
float
>
(),
lod_tensor
.
tensor
().
data
<
float
>
());
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
(),
lod_tensor_
.
data
<
float
>
());
level
=
1
;
new_lod_tensor
=
lod_tensor
;
new_lod_tensor
=
lod_tensor
_
;
new_lod_tensor
.
SliceInLevel
(
level
,
0
,
2
);
ASSERT_EQ
(
new_lod_tensor
.
NumLevels
(),
2UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
0
),
2UL
);
ASSERT_EQ
(
new_lod_tensor
.
NumElements
(
1
),
4UL
);
ASSERT_EQ
(
new_lod_tensor
.
tensor
().
data
<
float
>
(),
lod_tensor
.
tensor
().
data
<
float
>
());
ASSERT_EQ
(
new_lod_tensor
.
data
<
float
>
(),
lod_tensor_
.
data
<
float
>
());
}
}
// namespace framework
...
...
paddle/framework/lod_tensor_test.cu
浏览文件 @
30ab4fae
...
...
@@ -26,18 +26,16 @@ __global__ void test(size_t* a, int size) {
}
TEST
(
LoDTensor
,
LoDInGPU
)
{
paddle
::
framework
::
Tensor
tensor
;
paddle
::
framework
::
LoDTensor
lod_tensor
;
paddle
::
platform
::
GPUPlace
place
(
0
);
paddle
::
framework
::
LoD
src_lod
;
src_lod
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
4
,
6
,
8
,
10
,
12
,
14
});
tensor
.
Resize
({
14
,
16
});
tensor
.
mutable_data
<
float
>
(
place
);
lod_
tensor
.
Resize
({
14
,
16
});
lod_
tensor
.
mutable_data
<
float
>
(
place
);
lod_tensor
.
set_lod
(
src_lod
);
lod_tensor
.
set_tensor
(
&
tensor
);
CHECK_EQ
(
lod_tensor
.
lod_element
(
0
,
2
),
4
);
CHECK_EQ
(
lod_tensor
.
lod_element
(
0
,
4
),
8
);
...
...
paddle/framework/operator.cc
浏览文件 @
30ab4fae
...
...
@@ -186,6 +186,48 @@ void OperatorBase::GenerateTemporaryNames() {
}
}
template
<
>
const
Tensor
*
InferShapeContext
::
Input
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
InputVar
(
name
);
return
var
==
nullptr
?
nullptr
:
GetTensorFromVar
(
var
);
}
template
<
>
const
std
::
vector
<
const
Tensor
*>
InferShapeContext
::
MultiInput
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
auto
names
=
op
().
Inputs
(
name
);
std
::
vector
<
const
Tensor
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
{
auto
var
=
scope_
.
FindVar
(
sub_name
);
return
var
==
nullptr
?
nullptr
:
GetTensorFromVar
(
var
);
});
return
res
;
}
template
<
>
Tensor
*
ExecutionContext
::
Output
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
OutputVar
(
name
);
return
var
==
nullptr
?
nullptr
:
const_cast
<
Tensor
*>
(
GetTensorFromVar
(
var
));
}
template
<
>
std
::
vector
<
Tensor
*>
ExecutionContext
::
MultiOutput
<
Tensor
>
(
const
std
::
string
&
name
)
const
{
auto
names
=
op
().
Outputs
(
name
);
std
::
vector
<
Tensor
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
{
auto
var
=
scope
().
FindVar
(
sub_name
);
return
var
==
nullptr
?
nullptr
:
const_cast
<
Tensor
*>
(
GetTensorFromVar
(
var
));
});
return
res
;
}
void
OpProtoAndCheckerMaker
::
Validate
()
{
validated_
=
true
;
CheckNoDuplicatedInOutAttrs
();
...
...
paddle/framework/operator.h
浏览文件 @
30ab4fae
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#include "op_info.h"
#include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
...
...
@@ -326,11 +327,27 @@ class InferShapeContext {
return
res
;
}
const
Tensor
*
GetTensorFromVar
(
const
Variable
*
var
)
const
{
if
(
var
->
IsType
<
LoDTensor
>
())
{
return
&
var
->
Get
<
LoDTensor
>
();
}
PADDLE_ENFORCE
(
var
->
IsType
<
Tensor
>
(),
"The Input(%s) must be LoDTensor or Tensor."
);
return
&
var
->
Get
<
Tensor
>
();
}
private:
const
OperatorBase
&
op_
;
const
Scope
&
scope_
;
};
template
<>
const
Tensor
*
InferShapeContext
::
Input
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
template
<>
const
std
::
vector
<
const
Tensor
*>
InferShapeContext
::
MultiInput
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
template
<
typename
T
>
struct
EigenDeviceConverter
;
...
...
@@ -363,9 +380,37 @@ class ExecutionContext : public InferShapeContext {
return
device_context_
;
}
// redefine Output function,
// use Variable::Get instead of Variable::GetMutable
template
<
typename
T
>
T
*
Output
(
const
std
::
string
&
name
)
const
{
auto
var
=
OutputVar
(
name
);
return
var
==
nullptr
?
nullptr
:
const_cast
<
T
*>
(
&
var
->
Get
<
T
>
());
}
// redefine MultiOutput function.
// use Variable::Get instead of Variable::GetMutable
template
<
typename
T
>
std
::
vector
<
T
*>
MultiOutput
(
const
std
::
string
&
name
)
const
{
auto
names
=
op
().
Outputs
(
name
);
std
::
vector
<
T
*>
res
;
res
.
reserve
(
names
.
size
());
std
::
transform
(
names
.
begin
(),
names
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
std
::
string
&
sub_name
)
{
return
Output
<
T
>
(
sub_name
);
});
return
res
;
}
const
platform
::
DeviceContext
*
device_context_
;
};
template
<>
Tensor
*
ExecutionContext
::
Output
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
template
<>
std
::
vector
<
Tensor
*>
ExecutionContext
::
MultiOutput
<
Tensor
>
(
const
std
::
string
&
name
)
const
;
class
OpKernel
{
public:
/**
...
...
paddle/operators/accuracy_op.cc
浏览文件 @
30ab4fae
...
...
@@ -34,7 +34,7 @@ class AccuracyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
inference
->
dims
()[
0
],
label
->
dims
()[
0
],
"inference size must be the same as label size"
);
ctx
.
Output
<
Tensor
>
(
"Accuracy"
)
->
Resize
({
1
});
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Accuracy"
)
->
Resize
({
1
});
}
};
...
...
paddle/operators/add_op.cc
浏览文件 @
30ab4fae
...
...
@@ -26,7 +26,8 @@ class AddOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
(),
"Two input of Add Op's dimension must be same."
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
paddle/operators/concat_op.cc
浏览文件 @
30ab4fae
...
...
@@ -26,7 +26,7 @@ class ConcatOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
size_t
axis
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
size_t
n
=
ins
.
size
();
...
...
paddle/operators/cos_sim_op.cc
浏览文件 @
30ab4fae
...
...
@@ -46,9 +46,9 @@ class CosSimOp : public framework::OperatorWithKernel {
" just 1 (which will be broadcasted to match Input(X))."
);
// resize tensor
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"XNorm"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"YNorm"
)
->
Resize
({
y_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"XNorm"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"YNorm"
)
->
Resize
({
y_dims
[
0
],
1
});
}
};
...
...
@@ -131,8 +131,10 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
"Shape of Input(Out@Grad) must be [X.Dim(0), 1]."
);
// resize tensor
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
if
(
y_grad
)
y_grad
->
Resize
(
y_dims
);
}
...
...
paddle/operators/elementwise_mul_op.cc
浏览文件 @
30ab4fae
...
...
@@ -31,7 +31,7 @@ class ElementWiseMulOp : public framework::OperatorWithKernel {
auto
y_dim
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
PADDLE_ENFORCE_GE
(
x_dim
.
size
(),
y_dim
.
size
(),
"Rank of first input must >= rank of second input."
)
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
x_dim
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
x_dim
);
}
};
...
...
@@ -80,8 +80,10 @@ class ElementWiseMulOpGrad : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
)
...
...
paddle/operators/fill_zeros_like_op.cc
浏览文件 @
30ab4fae
...
...
@@ -23,7 +23,7 @@ class FillZerosLikeOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
framework
::
Tensor
>
(
"Dst"
)
->
Resize
(
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Dst"
)
->
Resize
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Src"
)
->
dims
());
}
};
...
...
paddle/operators/gather_op.cc
浏览文件 @
30ab4fae
...
...
@@ -28,7 +28,7 @@ class GatherOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GE
(
batch_size
,
0
,
"Batch size must be >0"
);
framework
::
DDim
output_dims
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
output_dims
[
0
]
=
batch_size
;
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
output_dims
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
output_dims
);
}
};
...
...
@@ -38,7 +38,7 @@ class GatherGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
X_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X_grad
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
X_grad
->
Resize
(
X
->
dims
());
...
...
paddle/operators/gaussian_random_op.cc
浏览文件 @
30ab4fae
...
...
@@ -44,7 +44,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
context
)
const
override
{
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
tensor
=
context
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
dims
=
Attr
<
std
::
vector
<
int
>>
(
"dims"
);
std
::
vector
<
int64_t
>
temp
;
temp
.
reserve
(
dims
.
size
());
...
...
paddle/operators/lookup_table_op.cc
浏览文件 @
30ab4fae
...
...
@@ -25,7 +25,7 @@ class LookupTableOp : public framework::OperatorWithKernel {
void
InferShape
(
const
framework
::
InferShapeContext
&
context
)
const
override
{
auto
table_t
=
context
.
Input
<
Tensor
>
(
"W"
);
auto
ids_t
=
context
.
Input
<
Tensor
>
(
"Ids"
);
auto
output_t
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
output_t
=
context
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
output_t
->
Resize
({
ids_t
->
dims
()[
0
],
table_t
->
dims
()[
1
]});
}
...
...
@@ -56,7 +56,8 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
context
)
const
override
{
auto
table
=
context
.
Input
<
Tensor
>
(
"W"
);
auto
d_table
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"W"
));
auto
d_table
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
d_table
->
Resize
(
table
->
dims
());
}
};
...
...
paddle/operators/mean_op.cc
浏览文件 @
30ab4fae
...
...
@@ -25,7 +25,7 @@ class MeanOp : public framework::OperatorWithKernel {
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input of MeanOp must be initialized."
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
1
});
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
({
1
});
}
};
...
...
@@ -45,7 +45,7 @@ class MeanGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
paddle/operators/minus_op.cc
浏览文件 @
30ab4fae
...
...
@@ -33,7 +33,7 @@ class MinusOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
left_tensor
->
numel
(),
right_tensor
->
numel
(),
"Minus operator must take two tensor with same num of elements"
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
left_tensor
->
dims
());
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
left_tensor
->
dims
());
}
};
...
...
paddle/operators/mul_op.cc
浏览文件 @
30ab4fae
...
...
@@ -18,6 +18,7 @@ namespace paddle {
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
LoDTensor
;
class
MulOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
@@ -45,7 +46,8 @@ class MulOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
x_mat_dims
[
1
],
y_mat_dims
[
0
],
"First matrix's width must be equal with second matrix's height."
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
x_mat_dims
[
0
],
y_mat_dims
[
1
]});
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
{
x_mat_dims
[
0
],
y_mat_dims
[
1
]});
}
};
...
...
@@ -94,8 +96,10 @@ class MulOpGrad : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
x_mat_dims
=
framework
::
flatten_to_2d
(
x_dims
,
Attr
<
int
>
(
"x_num_col_dims"
));
...
...
paddle/operators/onehot_cross_entropy_op.cc
浏览文件 @
30ab4fae
...
...
@@ -29,7 +29,7 @@ class OnehotCrossEntropyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
X
->
dims
().
size
(),
2
,
"X's dimension must be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
1
,
"label's dimension must be 1."
);
PADDLE_ENFORCE_EQ
(
X
->
dims
()[
0
],
label
->
dims
()[
0
]);
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
({
X
->
dims
()[
0
],
1
});
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Y"
)
->
Resize
({
X
->
dims
()[
0
],
1
});
}
};
...
...
@@ -39,7 +39,7 @@ class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dX
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
X
=
ctx
.
Input
<
Tensor
>
(
"X"
);
dX
->
Resize
(
X
->
dims
());
...
...
paddle/operators/pad_op.cc
浏览文件 @
30ab4fae
...
...
@@ -34,7 +34,8 @@ class PadOp : public framework::OperatorWithKernel {
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
out_dims
[
i
]
=
x_dim
[
i
]
+
paddings
[
i
*
2
]
+
paddings
[
i
*
2
+
1
];
}
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
framework
::
make_ddim
(
out_dims
));
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
framework
::
make_ddim
(
out_dims
));
}
};
...
...
@@ -95,9 +96,9 @@ class PadOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
*
x_g
rad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_g
rad
!=
nullptr
)
{
x_g
rad
->
Resize
(
x_dims
);
auto
*
x_g
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_g
!=
nullptr
)
{
x_g
->
Resize
(
x_dims
);
}
}
};
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
30ab4fae
...
...
@@ -26,10 +26,11 @@ namespace operators {
using
Scope
=
framework
::
Scope
;
using
Variable
=
framework
::
Variable
;
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
void
RecurrentAlgorithm
::
InferShape
(
const
Scope
&
scope
)
const
{
seq_len_
=
scope
.
FindVar
((
arg_
->
inlinks
[
0
]).
external
)
->
GetMutable
<
Tensor
>
()
->
GetMutable
<
LoD
Tensor
>
()
->
dims
()[
0
];
CreateScopes
(
scope
);
auto
step_scopes
=
GetStepScopes
(
scope
);
...
...
@@ -88,7 +89,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// the weight are located in parent scope
for
(
auto
&
var_name
:
input
.
second
)
{
if
(
!
step_scope
.
FindVar
(
var_name
))
{
step_scope
.
NewVar
(
var_name
)
->
GetMutable
<
Tensor
>
();
step_scope
.
NewVar
(
var_name
)
->
GetMutable
<
LoD
Tensor
>
();
}
}
}
...
...
@@ -106,11 +107,12 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
void
RecurrentAlgorithm
::
InitMemories
(
Scope
*
step_scope
,
bool
infer_shape_mode
)
const
{
for
(
auto
&
attr
:
arg_
->
memories
)
{
Tensor
*
pre_mem
=
step_scope
->
NewVar
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
auto
*
pre_mem
=
step_scope
->
NewVar
(
attr
.
pre_var
)
->
GetMutable
<
LoD
Tensor
>
();
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
boot_var
)
!=
nullptr
,
"memory [%s]'s boot variable [%s] not exists"
,
attr
.
var
,
attr
.
boot_var
);
Tensor
*
boot_mem
=
step_scope
->
FindVar
(
attr
.
boot_var
)
->
GetMutable
<
Tensor
>
();
auto
*
boot_mem
=
step_scope
->
FindVar
(
attr
.
boot_var
)
->
GetMutable
<
LoDTensor
>
();
if
(
infer_shape_mode
)
{
pre_mem
->
Resize
(
boot_mem
->
dims
());
PADDLE_ENFORCE_EQ
(
pre_mem
->
dims
().
size
(),
2
);
...
...
@@ -192,9 +194,9 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
"memory variable [%s] does not exists"
,
attr
.
var
);
PADDLE_ENFORCE
(
step_scope
->
FindVar
(
attr
.
boot_var
)
!=
nullptr
,
"boot variable [%s] does not exists"
,
attr
.
boot_var
);
Tensor
*
mem_grad
=
step_scope
->
NewVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
Tensor
*
boot_mem_grad
=
step_scope
->
NewVar
(
attr
.
boot_var
)
->
GetMutable
<
Tensor
>
();
auto
*
mem_grad
=
step_scope
->
NewVar
(
attr
.
var
)
->
GetMutable
<
LoD
Tensor
>
();
auto
*
boot_mem_grad
=
step_scope
->
NewVar
(
attr
.
boot_var
)
->
GetMutable
<
LoD
Tensor
>
();
if
(
infer_shape_mode
)
{
boot_mem_grad
->
Resize
(
mem_grad
->
dims
());
}
else
{
...
...
@@ -205,7 +207,7 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
void
RecurrentGradientAlgorithm
::
InferShape
(
const
Scope
&
scope
)
const
{
seq_len_
=
scope
.
FindVar
((
arg_
->
inlinks
[
0
]).
external
)
->
GetMutable
<
Tensor
>
()
->
GetMutable
<
LoD
Tensor
>
()
->
dims
()[
0
];
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
...
...
paddle/operators/reshape_op.cc
浏览文件 @
30ab4fae
...
...
@@ -46,7 +46,7 @@ class ReshapeOp : public framework::OperatorWithKernel {
std
::
transform
(
shape
.
begin
(),
shape
.
end
(),
shape_int64
.
begin
(),
[](
int
a
)
{
return
static_cast
<
int64_t
>
(
a
);
});
auto
out_dims
=
framework
::
make_ddim
(
shape_int64
);
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
}
};
...
...
@@ -90,7 +90,7 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
auto
dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
dims
();
auto
*
d_in
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_in
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
d_in
->
Resize
(
dims
);
}
};
...
...
paddle/operators/rnn/recurrent_op_utils.cc
浏览文件 @
30ab4fae
...
...
@@ -21,6 +21,7 @@ namespace rnn {
namespace
f
=
paddle
::
framework
;
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
,
...
...
@@ -31,7 +32,7 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
PADDLE_ENFORCE
(
input_var
!=
nullptr
,
"input link [%s] is not in scope."
,
inlinks
[
i
].
external
);
Tensor
*
input
=
input_var
->
GetMutable
<
Tensor
>
();
LoDTensor
*
input
=
input_var
->
GetMutable
<
LoD
Tensor
>
();
f
::
DDim
dims
=
input
->
dims
();
PADDLE_ENFORCE
(
static_cast
<
size_t
>
(
dims
[
0
])
==
seq_len
,
"all the inlinks must have same length"
);
...
...
@@ -40,6 +41,8 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
Tensor
*
step_input
=
step_scopes
[
j
]
->
NewVar
(
inlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
if
(
!
infer_shape_mode
)
{
// The input of operators of each step is Tensor here.
// Maybe need to modify Slice function.
*
step_input
=
input
->
Slice
<
float
>
(
j
,
j
+
1
);
}
step_input
->
Resize
(
step_dims
);
...
...
@@ -54,21 +57,23 @@ void ConcatOutputs(const std::vector<Scope*>& step_scopes,
auto
output_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
external
);
PADDLE_ENFORCE
(
output_var
!=
nullptr
,
"output link [%s] is not in scope."
,
outlinks
[
i
].
external
);
Tensor
*
output
=
output_var
->
GetMutable
<
Tensor
>
();
LoDTensor
*
output
=
output_var
->
GetMutable
<
LoD
Tensor
>
();
if
(
infer_shape_mode
)
{
auto
step_scope_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
);
PADDLE_ENFORCE
(
step_scope_var
!=
nullptr
,
"%s not in scope"
,
outlinks
[
i
].
internal
);
f
::
DDim
step_dims
=
step_scope_var
->
template
GetMutable
<
Tensor
>()
->
dims
();
f
::
DDim
step_dims
=
step_scope_var
->
template
GetMutable
<
LoDTensor
>()
->
dims
();
std
::
vector
<
int64_t
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
Resize
(
f
::
make_ddim
(
dims_vec
));
}
else
{
output
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_output
=
step_scopes
[
j
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
LoDTensor
*
step_output
=
step_scopes
[
j
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
LoDTensor
>
();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(
output
->
Slice
<
float
>
(
j
,
j
+
1
))
...
...
@@ -94,8 +99,8 @@ void LinkMemories(const std::vector<Scope*>& scopes,
auto
scope
=
scopes
[
step_id
];
auto
linked_scope
=
scopes
[
step_id
+
offset
];
for
(
auto
&
attr
:
memories
)
{
auto
mem
=
scope
->
FindVar
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
auto
linked_mem
=
linked_scope
->
FindVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
auto
mem
=
scope
->
FindVar
(
attr
.
pre_var
)
->
GetMutable
<
LoD
Tensor
>
();
auto
linked_mem
=
linked_scope
->
FindVar
(
attr
.
var
)
->
GetMutable
<
LoD
Tensor
>
();
if
(
infer_shape_mode
)
{
mem
->
Resize
(
linked_mem
->
dims
());
}
else
{
...
...
paddle/operators/rowwise_add_op.cc
浏览文件 @
30ab4fae
...
...
@@ -37,7 +37,7 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
framework
::
slice_ddim
(
x_dims
,
num_col_dims
,
x_dims
.
size
()),
b_dims
,
"The width of two operands must be same"
);
PADDLE_ENFORCE_EQ
(
ctx
.
OutputSize
(
"Out"
),
1
,
"The output size must be 1"
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
x_dims
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
x_dims
);
}
};
...
...
@@ -76,8 +76,8 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
num_col_dims
,
x_dims
.
size
()),
b_dims
,
"The width of two operands must be same"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
db
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"b"
));
auto
*
dx
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
db
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"b"
));
if
(
dx
)
dx
->
Resize
(
x_dims
);
if
(
db
)
db
->
Resize
(
b_dims
);
}
...
...
paddle/operators/scale_op.cc
浏览文件 @
30ab4fae
...
...
@@ -28,7 +28,7 @@ class ScaleOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
out
->
Resize
(
in
->
dims
());
}
};
...
...
paddle/operators/scatter_op.cc
浏览文件 @
30ab4fae
...
...
@@ -35,7 +35,8 @@ class ScatterOp : public framework::OperatorWithKernel {
framework
::
DDim
data_dim
(
ctx
.
Input
<
Tensor
>
(
"Updates"
)
->
dims
());
for
(
int
i
=
1
;
i
<
data_dim
.
size
();
++
i
)
PADDLE_ENFORCE_EQ
(
data_dim
[
i
],
ctx
.
Input
<
Tensor
>
(
"Updates"
)
->
dims
()[
i
]);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Ref"
)
->
dims
());
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Ref"
)
->
dims
());
}
};
...
...
@@ -45,9 +46,11 @@ class ScatterGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
*
dUpdates
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Updates"
));
auto
*
dUpdates
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Updates"
));
auto
*
Updates
=
ctx
.
Input
<
Tensor
>
(
"Updates"
);
auto
*
dRef
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Ref"
));
auto
*
dRef
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Ref"
));
auto
*
Ref
=
ctx
.
Input
<
Tensor
>
(
"Ref"
);
dRef
->
Resize
(
Ref
->
dims
());
...
...
paddle/operators/sequence_avg_pool_op.cc
0 → 100644
浏览文件 @
30ab4fae
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_avg_pool_op.h"
namespace
paddle
{
namespace
operators
{
class
SequenceAvgPoolOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input of SequenceAvgPoolOp"
"must be initialized."
);
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
dims
=
x
->
dims
();
auto
lod
=
x
->
lod
();
PADDLE_ENFORCE_EQ
(
lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_GE
(
dims
[
0
],
/*batch size = */
static_cast
<
int64_t
>
(
lod
[
0
].
size
()
-
1
),
"The first dimension of Input(X) must be large than batch size."
);
dims
[
0
]
=
lod
[
0
].
size
()
-
1
;
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
({
dims
});
}
};
class
SequenceAvgPoolOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SequenceAvgPoolOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of SequenceAvgPoolOp."
);
AddOutput
(
"Out"
,
"The output of SequenceAvgPoolOp."
);
AddComment
(
R"DOC(
SequenceAvgPoolOp averages features of all time-steps of each instance.
More detailed comments will be added later.
)DOC"
);
}
};
class
SequenceAvgPoolGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Gradient of Out should not be null"
);
auto
og_dims
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
x_dims
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
og_dims
.
size
(),
x_dims
.
size
(),
"The rank of output grad must equal to Input(X)."
);
for
(
int64_t
i
=
1
;
i
<
og_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
og_dims
[
i
],
x_dims
[
i
],
"The dimension mismatch."
);
}
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
x_grad
->
Resize
(
x_dims
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sequence_avg_pool
,
ops
::
SequenceAvgPoolOp
,
ops
::
SequenceAvgPoolOpMaker
,
sequence_avg_pool_grad
,
ops
::
SequenceAvgPoolGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_avg_pool
,
ops
::
SequenceAvgPoolKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_avg_pool_grad
,
ops
::
SequenceAvgPoolGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/sequence_avg_pool_op.cu
0 → 100644
浏览文件 @
30ab4fae
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sequence_avg_pool_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
sequence_avg_pool
,
ops
::
SequenceAvgPoolKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
sequence_avg_pool_grad
,
ops
::
SequenceAvgPoolGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/sequence_avg_pool_op.h
0 → 100644
浏览文件 @
30ab4fae
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
SequenceAvgPoolKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
();
int64_t
w
=
in
->
numel
()
/
dims
[
0
];
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
[
0
].
size
())
-
1
;
++
i
)
{
Tensor
in_t
=
in
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod
[
0
][
i
]),
static_cast
<
int
>
(
lod
[
0
][
i
+
1
]));
Tensor
out_t
=
out
->
Slice
<
T
>
(
i
,
i
+
1
);
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]);
auto
in_e
=
EigenMatrix
<
T
>::
From
(
in_t
,
{
h
,
w
});
auto
out_e
=
EigenMatrix
<
T
>::
From
(
out_t
,
{
h
,
w
});
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
}
};
template
<
typename
Place
,
typename
T
>
class
SequenceAvgPoolGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Output
<
LoDTensor
>
(
"X"
);
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
();
int64_t
w
=
in
->
numel
()
/
dims
[
0
];
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
[
0
].
size
())
-
1
;
++
i
)
{
auto
in_g_t
=
in_g
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod
[
0
][
i
]),
static_cast
<
int
>
(
lod
[
0
][
i
+
1
]));
auto
out_g_t
=
out_g
->
Slice
<
T
>
(
i
,
i
+
1
);
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]);
auto
in_g_e
=
EigenMatrix
<
T
>::
From
(
in_g_t
,
{
h
,
w
});
auto
out_g_e
=
EigenMatrix
<
T
>::
From
(
out_g_t
,
{
1
,
w
});
Eigen
::
DSizes
<
int
,
2
>
bcast
(
h
,
w
);
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/operators/sgd_op.cc
浏览文件 @
30ab4fae
...
...
@@ -23,10 +23,11 @@ class SGDOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"param"
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
"grad"
)
->
dims
(),
"Two input of SGD Op's dimension must be same."
);
ctx
.
Output
<
Tensor
>
(
"param_out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"param"
)
->
dims
());
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"param"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"grad"
)
->
dims
(),
"Two input of SGD Op's dimension must be same."
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"param_out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"param"
)
->
dims
());
}
};
...
...
paddle/operators/sigmoid_op.cc
浏览文件 @
30ab4fae
...
...
@@ -23,7 +23,8 @@ class SigmoidOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
@@ -44,7 +45,7 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
};
...
...
paddle/operators/softmax_op.cc
浏览文件 @
30ab4fae
...
...
@@ -25,7 +25,8 @@ class SoftmaxOp : public framework::OperatorWithKernel {
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
()
==
2UL
,
"The input of softmax op must be a matrix."
);
ctx
.
Output
<
Tensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
@@ -71,7 +72,7 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
dims
(),
"Input(Y) and its gradients should have a same shape."
);
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
paddle/operators/squared_l2_distance_op.cc
浏览文件 @
30ab4fae
...
...
@@ -48,9 +48,9 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel {
"First dimension of target must be equal to input "
"or to 1."
);
ctx
.
Output
<
Tensor
>
(
"sub_result"
)
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"sub_result"
)
->
Resize
({
x_dims
[
0
],
x
->
numel
()
/
x_dims
[
0
]});
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
}
};
...
...
@@ -94,8 +94,10 @@ class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
out_dims
[
1
],
1
,
"Second dimension of output gradient "
"must be 1."
);
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
if
(
y_grad
)
y_grad
->
Resize
(
y_dims
);
}
...
...
paddle/operators/sum_op.cc
浏览文件 @
30ab4fae
...
...
@@ -23,7 +23,7 @@ class SumOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
int
N
=
ins
.
size
();
auto
in_dim
=
ins
[
0
]
->
dims
();
...
...
@@ -55,7 +55,8 @@ class SumGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
auto
outputs
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
outputs
=
ctx
.
MultiOutput
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
for
(
auto
output
:
outputs
)
{
output
->
Resize
(
dims
);
...
...
paddle/operators/top_k_op.cc
浏览文件 @
30ab4fae
...
...
@@ -35,8 +35,8 @@ class TopkOp : public framework::OperatorWithKernel {
framework
::
DDim
dims
=
input
->
dims
();
dims
[
dims
.
size
()
-
1
]
=
k
;
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
dims
);
ctx
.
Output
<
Tensor
>
(
"Indices"
)
->
Resize
(
dims
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
)
->
Resize
(
dims
);
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Indices"
)
->
Resize
(
dims
);
}
};
...
...
paddle/operators/uniform_random_op.cc
浏览文件 @
30ab4fae
...
...
@@ -50,7 +50,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
Attr
<
float
>
(
"min"
)
<
Attr
<
float
>
(
"max"
),
"uniform_random's min must less then max"
);
auto
*
tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
tensor
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
dims
=
Attr
<
std
::
vector
<
int
>>
(
"dims"
);
std
::
vector
<
int64_t
>
temp
;
temp
.
reserve
(
dims
.
size
());
...
...
paddle/pybind/pybind.cc
浏览文件 @
30ab4fae
...
...
@@ -97,27 +97,21 @@ PYBIND11_PLUGIN(core) {
return
self
.
data
<
float
>
()[
offset
];
});
py
::
class_
<
LoDTensor
>
(
m
,
"LoDTensor"
,
R"DOC(LoD(Leval of Ddetails) Tensor.
The tensor and LoD info should be created before creating the LoDTensor, then
call the set_tensor and set_lod functions to set them.
)DOC"
)
.
def
(
"__init__"
,
[](
LoDTensor
&
instance
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
,
Tensor
*
t
)
{
py
::
class_
<
LoDTensor
,
Tensor
>
(
m
,
"LoDTensor"
)
.
def_buffer
(
[](
Tensor
&
self
)
->
py
::
buffer_info
{
return
CastToPyBuffer
(
self
);
})
.
def
(
"__init__"
,
[](
LoDTensor
&
instance
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
)
{
#ifdef PADDLE_ONLY_CPU
new
(
&
instance
)
LoDTensor
(
lod
,
t
);
new
(
&
instance
)
LoDTensor
(
lod
);
#else
paddle
::
framework
::
LoD
new_lod
;
new_lod
.
reserve
(
lod
.
size
());
std
::
copy
(
lod
.
begin
(),
lod
.
end
(),
std
::
back_inserter
(
new_lod
));
new
(
&
instance
)
LoDTensor
(
new_lod
,
t
);
new
(
&
instance
)
LoDTensor
(
new_lod
);
#endif
})
.
def
(
"set_tensor"
,
[](
LoDTensor
&
self
,
Tensor
*
tensor
)
{
self
.
set_tensor
(
tensor
);
})
})
.
def
(
"set_lod"
,
[](
LoDTensor
&
self
,
const
std
::
vector
<
std
::
vector
<
size_t
>>
&
lod
)
{
#ifdef PADDLE_ONLY_CPU
...
...
@@ -129,9 +123,6 @@ call the set_tensor and set_lod functions to set them.
self
.
set_lod
(
new_lod
);
#endif
})
.
def
(
"tensor"
,
[](
LoDTensor
&
self
)
->
Tensor
&
{
return
self
.
tensor
();
},
py
::
return_value_policy
::
reference
)
.
def
(
"lod"
,
[](
LoDTensor
&
self
)
->
std
::
vector
<
std
::
vector
<
size_t
>>
{
#ifdef PADDLE_ONLY_CPU
return
self
.
lod
();
...
...
@@ -160,9 +151,6 @@ All parameter, weight, gradient are variables in Paddle.
[](
Variable
&
var
,
int
val
)
->
void
{
*
var
.
GetMutable
<
int
>
()
=
val
;
})
.
def
(
"get_int"
,
[](
const
Variable
&
var
)
->
int
{
return
var
.
Get
<
int
>
();
})
.
def
(
"get_tensor"
,
[](
Variable
&
self
)
->
Tensor
*
{
return
self
.
GetMutable
<
Tensor
>
();
},
py
::
return_value_policy
::
reference
)
.
def
(
"get_lod_tensor"
,
[](
Variable
&
self
)
->
LoDTensor
*
{
return
self
.
GetMutable
<
LoDTensor
>
();
},
...
...
python/paddle/v2/framework/tests/test_tensor.py
浏览文件 @
30ab4fae
...
...
@@ -44,79 +44,66 @@ class TestTensor(unittest.TestCase):
self
.
assertAlmostEqual
(
2.0
,
tensor_array_2
[
19
,
11
])
def
test_int_lod_tensor
(
self
):
places
=
[
core
.
CPUPlace
(),
core
.
GPUPlace
(
0
)]
for
place
in
places
:
scope
=
core
.
Scope
()
var
=
scope
.
new_var
(
"test_tensor"
)
var_lod
=
scope
.
new_var
(
"test_lod_tensor"
)
tensor
=
var
.
get_tensor
()
lod_tensor
=
var_lod
.
get_lod_tensor
()
tensor
.
set_dims
([
4
,
4
,
6
])
tensor
.
alloc_int
(
place
)
array
=
numpy
.
array
(
tensor
)
array
[
0
,
0
,
0
]
=
3
array
[
3
,
3
,
5
]
=
10
tensor
.
set
(
array
,
place
)
place
=
core
.
CPUPlace
()
scope
=
core
.
Scope
()
var_lod
=
scope
.
new_var
(
"test_lod_tensor"
)
lod_tensor
=
var_lod
.
get_tensor
()
lod_tensor
.
set_tensor
(
tensor
)
lod_tensor
.
set_lod
([[
0
,
2
,
4
]])
lod_tensor
.
set_dims
([
4
,
4
,
6
])
lod_tensor
.
alloc_int
(
place
)
array
=
numpy
.
array
(
lod_tensor
)
array
[
0
,
0
,
0
]
=
3
array
[
3
,
3
,
5
]
=
10
lod_tensor
.
set
(
array
,
place
)
lod_tensor
.
set_lod
([[
0
,
2
,
4
]])
lod_v
=
numpy
.
array
(
lod_tensor
.
tensor
()
)
self
.
assertTrue
(
numpy
.
alltrue
(
array
==
lod_v
))
lod_v
=
numpy
.
array
(
lod_tensor
)
self
.
assertTrue
(
numpy
.
alltrue
(
array
==
lod_v
))
lod
=
lod_tensor
.
lod
()
self
.
assertEqual
(
0
,
lod
[
0
][
0
])
self
.
assertEqual
(
2
,
lod
[
0
][
1
])
self
.
assertEqual
(
4
,
lod
[
0
][
2
])
lod
=
lod_tensor
.
lod
()
self
.
assertEqual
(
0
,
lod
[
0
][
0
])
self
.
assertEqual
(
2
,
lod
[
0
][
1
])
self
.
assertEqual
(
4
,
lod
[
0
][
2
])
def
test_float_lod_tensor
(
self
):
places
=
[
core
.
CPUPlace
(),
core
.
GPUPlace
(
0
)]
for
place
in
places
:
scope
=
core
.
Scope
()
var
=
scope
.
new_var
(
"test_tensor"
)
var_lod
=
scope
.
new_var
(
"test_lod_tensor"
)
tensor
=
var
.
get_tensor
()
lod_tensor
=
var_lod
.
get_lod_tensor
()
tensor
.
set_dims
([
5
,
2
,
3
,
4
])
tensor
.
alloc_float
(
place
)
place
=
core
.
CPUPlace
()
scope
=
core
.
Scope
()
var_lod
=
scope
.
new_var
(
"test_lod_tensor"
)
tensor_array
=
numpy
.
array
(
tensor
)
self
.
assertEqual
((
5
,
2
,
3
,
4
),
tensor_array
.
shape
)
tensor_array
[
0
,
0
,
0
,
0
]
=
1.0
tensor_array
[
0
,
0
,
0
,
1
]
=
2.0
tensor
.
set
(
tensor_array
,
place
)
lod_tensor
=
var_lod
.
get_tensor
()
lod_tensor
.
set_dims
([
5
,
2
,
3
,
4
])
lod_tensor
.
alloc_float
(
place
)
lod_tensor
.
set_tensor
(
tensor
)
tensor_array
=
numpy
.
array
(
lod_tensor
)
self
.
assertEqual
((
5
,
2
,
3
,
4
),
tensor_array
.
shape
)
tensor_array
[
0
,
0
,
0
,
0
]
=
1.0
tensor_array
[
0
,
0
,
0
,
1
]
=
2.0
lod_tensor
.
set
(
tensor_array
,
place
)
lod_v
=
numpy
.
array
(
lod_tensor
.
tensor
()
)
self
.
assertAlmostEqual
(
1.0
,
lod_v
[
0
,
0
,
0
,
0
])
self
.
assertAlmostEqual
(
2.0
,
lod_v
[
0
,
0
,
0
,
1
])
self
.
assertEqual
(
len
(
lod_tensor
.
lod
()),
0
)
lod_v
=
numpy
.
array
(
lod_tensor
)
self
.
assertAlmostEqual
(
1.0
,
lod_v
[
0
,
0
,
0
,
0
])
self
.
assertAlmostEqual
(
2.0
,
lod_v
[
0
,
0
,
0
,
1
])
self
.
assertEqual
(
len
(
lod_tensor
.
lod
()),
0
)
lod_py
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
5
]]
lod_tensor
.
set_lod
(
lod_py
)
lod
=
lod_tensor
.
lod
()
self
.
assertListEqual
(
lod_py
,
lod
)
lod_py
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
5
]]
lod_tensor
.
set_lod
(
lod_py
)
lod
=
lod_tensor
.
lod
()
self
.
assertListEqual
(
lod_py
,
lod
)
def
test_lod_tensor_init
(
self
):
scope
=
core
.
Scope
()
var
=
scope
.
new_var
(
"test_tensor"
)
place
=
core
.
CPUPlace
()
tensor
=
var
.
get_tensor
()
tensor
.
set_dims
([
5
,
2
,
3
,
4
])
tensor
.
alloc_float
(
place
)
tensor_array
=
numpy
.
array
(
tensor
)
lod_py
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
5
]]
lod_tensor
=
core
.
LoDTensor
(
lod_py
)
lod_tensor
.
set_dims
([
5
,
2
,
3
,
4
])
lod_tensor
.
alloc_float
(
place
)
tensor_array
=
numpy
.
array
(
lod_tensor
)
tensor_array
[
0
,
0
,
0
,
0
]
=
1.0
tensor_array
[
0
,
0
,
0
,
1
]
=
2.0
tensor
.
set
(
tensor_array
,
place
)
lod_py
=
[[
0
,
2
,
5
],
[
0
,
2
,
4
,
5
]]
lod_tensor
.
set
(
tensor_array
,
place
)
lod_tensor
=
core
.
LoDTensor
(
lod_py
,
tensor
)
lod_v
=
numpy
.
array
(
lod_tensor
.
tensor
())
lod_v
=
numpy
.
array
(
lod_tensor
)
self
.
assertAlmostEqual
(
1.0
,
lod_v
[
0
,
0
,
0
,
0
])
self
.
assertAlmostEqual
(
2.0
,
lod_v
[
0
,
0
,
0
,
1
])
self
.
assertListEqual
(
lod_py
,
lod_tensor
.
lod
())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录