Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3065cb26
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3065cb26
编写于
8月 18, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add huber_regression_cost
上级
27a99bfb
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
192 addition
and
3 deletion
+192
-3
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+5
-0
paddle/gserver/layers/CostLayer.cpp
paddle/gserver/layers/CostLayer.cpp
+55
-0
paddle/gserver/layers/CostLayer.h
paddle/gserver/layers/CostLayer.h
+24
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+19
-1
proto/ModelConfig.proto
proto/ModelConfig.proto
+3
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+11
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+53
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
..._helpers/tests/configs/protostr/test_cost_layers.protostr
+17
-0
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py
.../trainer_config_helpers/tests/configs/test_cost_layers.py
+2
-0
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+3
-2
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
3065cb26
...
@@ -409,6 +409,11 @@ multi_binary_label_cross_entropy_cost
...
@@ -409,6 +409,11 @@ multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex:
:noindex:
huber_regression_cost
-------------------------
.. autoclass:: paddle.v2.layer.huber_regression_cost
:noindex:
huber_classification_cost
huber_classification_cost
-------------------------
-------------------------
.. autoclass:: paddle.v2.layer.huber_classification_cost
.. autoclass:: paddle.v2.layer.huber_classification_cost
...
...
paddle/gserver/layers/CostLayer.cpp
浏览文件 @
3065cb26
...
@@ -594,6 +594,61 @@ void HuberCost::forwardImp(Matrix& output, Argument& label, Matrix& cost) {
...
@@ -594,6 +594,61 @@ void HuberCost::forwardImp(Matrix& output, Argument& label, Matrix& cost) {
}
}
}
}
//
// Huber loss for robust regression.
//
REGISTER_LAYER
(
huber_regression
,
HuberRegressionLoss
);
bool
HuberRegressionLoss
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
HuberCost
::
init
(
layerMap
,
parameterMap
);
delta_
=
config_
.
delta
();
return
true
;
}
void
HuberRegressionLoss
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
target
)
{
HuberCost
::
forwardImp
(
output
,
label
,
target
);
size_t
numSamples
=
target
.
getHeight
();
CHECK
(
label
.
value
);
CHECK_EQ
((
*
label
.
value
).
getHeight
(),
numSamples
);
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
CHECK_EQ
(
output
.
getWidth
(),
(
*
label
.
value
).
getWidth
());
CHECK_EQ
(
target
.
getWidth
(),
(
size_t
)
1
);
real
*
out
=
useGpu_
?
tmpCpuInput_
[
0
].
value
->
getData
()
:
output
.
getData
();
real
*
lbl
=
useGpu_
?
tmpCpuInput_
[
1
].
value
->
getData
()
:
(
*
label
.
value
).
getData
();
std
::
vector
<
real
>
cost
(
numSamples
);
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
real
a
=
std
::
abs
(
lbl
[
i
]
-
out
[
i
]);
if
(
a
<=
delta_
)
cost
[
i
]
=
a
*
a
/
2
;
else
cost
[
i
]
=
delta_
*
(
a
-
delta_
/
2
);
}
target
.
copyFrom
(
cost
.
data
(),
numSamples
);
}
void
HuberRegressionLoss
::
backwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
outputG
)
{
size_t
numSamples
=
output
.
getHeight
();
real
*
out
=
useGpu_
?
tmpCpuInput_
[
0
].
value
->
getData
()
:
output
.
getData
();
real
*
lbl
=
useGpu_
?
tmpCpuInput_
[
1
].
value
->
getData
()
:
(
*
label
.
value
).
getData
();
real
*
grad
=
useGpu_
?
tmpCpuInput_
[
0
].
grad
->
getData
()
:
outputG
.
getData
();
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
real
a
=
lbl
[
i
]
-
out
[
i
];
if
(
std
::
abs
(
a
)
<=
delta_
)
grad
[
i
]
+=
-
a
;
else
grad
[
i
]
+=
a
>
0
?
delta_
:
-
delta_
;
}
if
(
useGpu_
)
outputG
.
copyFrom
(
grad
,
numSamples
);
}
//
//
// Huber loss for robust 2-classes classification
// Huber loss for robust 2-classes classification
//
//
...
...
paddle/gserver/layers/CostLayer.h
浏览文件 @
3065cb26
...
@@ -321,6 +321,30 @@ public:
...
@@ -321,6 +321,30 @@ public:
void
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
{}
void
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
{}
};
};
/**
* Huber loss for robust regression.
*
* Given output f(x), label y and delta, the loss is:
* Loss = 0.5 * (1 - y * f)^2, if abs(y - f) <= delta \\
* Loss = delta * abs(y - f) - 0.5 * delta^2, otherwise
*/
class
HuberRegressionLoss
:
public
HuberCost
{
public:
explicit
HuberRegressionLoss
(
const
LayerConfig
&
config
)
:
HuberCost
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
override
;
void
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
override
;
protected:
real
delta_
;
};
/**
/**
* Huber loss for robust 2-classes classification.
* Huber loss for robust 2-classes classification.
*
*
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
3065cb26
...
@@ -828,6 +828,24 @@ TEST(Layer, square_error_weighted) {
...
@@ -828,6 +828,24 @@ TEST(Layer, square_error_weighted) {
}
}
}
}
TEST
(
Layer
,
huber_regression_loss
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"huber_regression"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
delta
:
{
1
,
3
,
5
})
{
config
.
layerConfig
.
set_delta
(
delta
);
testLayerGrad
(
config
,
"huber_regression"
,
100
,
/* trans */
false
,
useGpu
);
}
}
}
TEST
(
Layer
,
huber_two_class
)
{
TEST
(
Layer
,
huber_two_class
)
{
TestConfig
config
;
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"huber_classification"
);
config
.
layerConfig
.
set_type
(
"huber_classification"
);
...
@@ -839,7 +857,7 @@ TEST(Layer, huber_two_class) {
...
@@ -839,7 +857,7 @@ TEST(Layer, huber_two_class) {
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"huber"
,
100
,
/* trans */
false
,
useGpu
);
testLayerGrad
(
config
,
"huber
_two_class
"
,
100
,
/* trans */
false
,
useGpu
);
}
}
}
}
...
...
proto/ModelConfig.proto
浏览文件 @
3065cb26
...
@@ -496,6 +496,9 @@ message LayerConfig {
...
@@ -496,6 +496,9 @@ message LayerConfig {
optional
int32
axis
=
54
[
default
=
2
];
optional
int32
axis
=
54
[
default
=
2
];
repeated
uint32
offset
=
55
;
repeated
uint32
offset
=
55
;
repeated
uint32
shape
=
56
;
repeated
uint32
shape
=
56
;
// for HuberRegressionLoss
optional
double
delta
=
57
[
default
=
1.0
];
}
}
message
EvaluatorConfig
{
message
EvaluatorConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
3065cb26
...
@@ -2317,6 +2317,17 @@ class LambdaCost(LayerBase):
...
@@ -2317,6 +2317,17 @@ class LambdaCost(LayerBase):
self
.
config
.
max_sort_size
=
max_sort_size
self
.
config
.
max_sort_size
=
max_sort_size
@
config_layer
(
'huber_regression'
)
class
HuberRegressionLoss
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
delta
=
1.
,
coeff
=
1.
,
device
=
None
):
super
(
HuberRegressionLoss
,
self
).
__init__
(
name
,
'huber_regression'
,
1
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
len
(
self
.
inputs
)
==
2
,
'HuberRegression must have 2 inputs'
)
self
.
config
.
delta
=
delta
self
.
config
.
coeff
=
coeff
@
config_layer
(
'nce'
)
@
config_layer
(
'nce'
)
class
NCELayer
(
LayerBase
):
class
NCELayer
(
LayerBase
):
def
__init__
(
self
,
def
__init__
(
self
,
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
3065cb26
...
@@ -108,6 +108,7 @@ __all__ = [
...
@@ -108,6 +108,7 @@ __all__ = [
'sum_cost'
,
'sum_cost'
,
'rank_cost'
,
'rank_cost'
,
'lambda_cost'
,
'lambda_cost'
,
'huber_regression_cost'
,
'huber_classification_cost'
,
'huber_classification_cost'
,
'block_expand_layer'
,
'block_expand_layer'
,
'maxout_layer'
,
'maxout_layer'
,
...
@@ -216,6 +217,7 @@ class LayerType(object):
...
@@ -216,6 +217,7 @@ class LayerType(object):
RANK_COST
=
'rank-cost'
RANK_COST
=
'rank-cost'
LAMBDA_COST
=
'lambda_cost'
LAMBDA_COST
=
'lambda_cost'
HUBER_REGRESSION
=
'huber_regression'
HUBER_CLASSIFICATION
=
'huber_classification'
HUBER_CLASSIFICATION
=
'huber_classification'
CROSS_ENTROPY
=
'multi-class-cross-entropy'
CROSS_ENTROPY
=
'multi-class-cross-entropy'
CROSS_ENTROPY_WITH_SELFNORM
=
'multi_class_cross_entropy_with_selfnorm'
CROSS_ENTROPY_WITH_SELFNORM
=
'multi_class_cross_entropy_with_selfnorm'
...
@@ -5603,6 +5605,57 @@ def sum_cost(input, name=None, layer_attr=None):
...
@@ -5603,6 +5605,57 @@ def sum_cost(input, name=None, layer_attr=None):
return
LayerOutput
(
name
,
LayerType
.
SUM_COST
,
parents
=
[
input
],
size
=
1
)
return
LayerOutput
(
name
,
LayerType
.
SUM_COST
,
parents
=
[
input
],
size
=
1
)
@
wrap_name_default
()
@
layer_support
()
def
huber_regression_cost
(
input
,
label
,
name
=
None
,
delta
=
1.0
,
coeff
=
1.0
,
layer_attr
=
None
):
"""
In statistics, the Huber loss is a loss function used in robust regression,
that is less sensitive to outliers in data than the squared error loss.
Given a prediction f(x), a label y and :math:`\delta`, the loss function
is defined as:
.. math:
loss = 0.5*\left ( y-f(x)
\r
ight )^2, \left | y-f(x)
\r
ight |\leq \delta
loss = \delta \left | y-f(x)
\r
ight |-0.5\delta ^2, otherwise
The example usage is:
.. code-block:: python
cost = huber_regression_cost(input=input_layer, label=label_layer)
:param input: The first input layer.
:type input: LayerOutput.
:param label: The input label.
:type input: LayerOutput.
:param name: The name of this layers. It is not necessary.
:type name: None|basestring.
:param delta: The difference between the observed and predicted values.
:type delta: float.
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float.
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput.
"""
assert
isinstance
(
input
,
LayerOutput
)
Layer
(
name
=
name
,
type
=
LayerType
.
HUBER_REGRESSION
,
inputs
=
[
input
.
name
,
label
.
name
],
delta
=
delta
,
coeff
=
coeff
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
HUBER_REGRESSION
,
parents
=
[
input
,
label
],
size
=
1
)
@
wrap_name_default
()
@
wrap_name_default
()
@
layer_support
()
@
layer_support
()
def
huber_classification_cost
(
input
,
def
huber_classification_cost
(
input
,
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers.protostr
浏览文件 @
3065cb26
...
@@ -167,6 +167,20 @@ layers {
...
@@ -167,6 +167,20 @@ layers {
softmax_selfnorm_alpha: 0.1
softmax_selfnorm_alpha: 0.1
coeff: 1.0
coeff: 1.0
}
}
layers {
name: "__huber_regression_cost_0__"
type: "huber_regression"
size: 1
active_type: ""
inputs {
input_layer_name: "input"
}
inputs {
input_layer_name: "labels"
}
coeff: 1.0
delta: 1.0
}
layers {
layers {
name: "huber_probs"
name: "huber_probs"
type: "data"
type: "data"
...
@@ -300,6 +314,7 @@ output_layer_names: "__rank_cost_0__"
...
@@ -300,6 +314,7 @@ output_layer_names: "__rank_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_regression_cost_0__"
output_layer_names: "__huber_classification_cost_0__"
output_layer_names: "__huber_classification_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__sum_cost_0__"
output_layer_names: "__sum_cost_0__"
...
@@ -324,6 +339,7 @@ sub_models {
...
@@ -324,6 +339,7 @@ sub_models {
layer_names: "__lambda_cost_0__"
layer_names: "__lambda_cost_0__"
layer_names: "__cross_entropy_0__"
layer_names: "__cross_entropy_0__"
layer_names: "__cross_entropy_with_selfnorm_0__"
layer_names: "__cross_entropy_with_selfnorm_0__"
layer_names: "__huber_regression_cost_0__"
layer_names: "huber_probs"
layer_names: "huber_probs"
layer_names: "huber_label"
layer_names: "huber_label"
layer_names: "__huber_classification_cost_0__"
layer_names: "__huber_classification_cost_0__"
...
@@ -349,6 +365,7 @@ sub_models {
...
@@ -349,6 +365,7 @@ sub_models {
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_regression_cost_0__"
output_layer_names: "__huber_classification_cost_0__"
output_layer_names: "__huber_classification_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
output_layer_names: "__sum_cost_0__"
output_layer_names: "__sum_cost_0__"
...
...
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.py
浏览文件 @
3065cb26
...
@@ -33,6 +33,8 @@ outputs(
...
@@ -33,6 +33,8 @@ outputs(
input
=
probs
,
label
=
xe_label
),
input
=
probs
,
label
=
xe_label
),
cross_entropy_with_selfnorm
(
cross_entropy_with_selfnorm
(
input
=
probs
,
label
=
xe_label
),
input
=
probs
,
label
=
xe_label
),
huber_regression_cost
(
input
=
seq_in
,
label
=
labels
),
huber_classification_cost
(
huber_classification_cost
(
input
=
data_layer
(
input
=
data_layer
(
name
=
'huber_probs'
,
size
=
1
),
name
=
'huber_probs'
,
size
=
1
),
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
3065cb26
...
@@ -141,12 +141,13 @@ class CostLayerTest(unittest.TestCase):
...
@@ -141,12 +141,13 @@ class CostLayerTest(unittest.TestCase):
cost8
=
layer
.
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost8
=
layer
.
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost9
=
layer
.
lambda_cost
(
input
=
inference
,
score
=
score
)
cost9
=
layer
.
lambda_cost
(
input
=
inference
,
score
=
score
)
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost11
=
layer
.
huber_classification_cost
(
input
=
score
,
label
=
label
)
cost11
=
layer
.
huber_regression_cost
(
input
=
score
,
label
=
label
)
cost12
=
layer
.
huber_classification_cost
(
input
=
score
,
label
=
label
)
print
layer
.
parse_network
([
cost1
,
cost2
])
print
layer
.
parse_network
([
cost1
,
cost2
])
print
layer
.
parse_network
([
cost3
,
cost4
])
print
layer
.
parse_network
([
cost3
,
cost4
])
print
layer
.
parse_network
([
cost5
,
cost6
])
print
layer
.
parse_network
([
cost5
,
cost6
])
print
layer
.
parse_network
([
cost7
,
cost8
,
cost9
,
cost10
,
cost11
])
print
layer
.
parse_network
([
cost7
,
cost8
,
cost9
,
cost10
,
cost11
,
cost12
])
crf
=
layer
.
crf
(
input
=
inference
,
label
=
label
)
crf
=
layer
.
crf
(
input
=
inference
,
label
=
label
)
crf_decoding
=
layer
.
crf_decoding
(
input
=
inference
,
size
=
3
)
crf_decoding
=
layer
.
crf_decoding
(
input
=
inference
,
size
=
3
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录