未验证 提交 301eeb5b 编写于 作者: L liu zhengxi 提交者: GitHub

Add capi for fluid inference api (#20092)

* add capi for fluid inference api, including AnalysisConfig, AnalysisPredictor, PaddleBuf, PaddleTensor, ZeroCopyTensor
上级 a16e91bb
...@@ -36,6 +36,7 @@ else(WIN32) ...@@ -36,6 +36,7 @@ else(WIN32)
endif(WIN32) endif(WIN32)
add_subdirectory(api) add_subdirectory(api)
add_subdirectory(capi)
if(WITH_MKLDNN) if(WITH_MKLDNN)
set(mkldnn_quantizer_src ${CMAKE_CURRENT_SOURCE_DIR}/api/mkldnn_quantizer.cc) set(mkldnn_quantizer_src ${CMAKE_CURRENT_SOURCE_DIR}/api/mkldnn_quantizer.cc)
......
cc_library(pd_config SRCS pd_config.cc)
cc_library(pd_predictor SRCS pd_predictor.cc)
cc_library(pd_tensor SRCS pd_tensor.cc)
cc_library(pd_c_api SRCS c_api.cc)
cc_library(paddle_fluid_c SRCS c_api.cc DEPS paddle_fluid pd_config pd_predictor pd_tensor pd_c_api)
# (TODO) dll
# cc_library(paddle_fluid_c_shared SHARED SRCS c_api.cc DEPS paddle_fluid pd_config pd_predictor pd_tensor pd_c_api)
# set_target_properties(paddle_fluid_c_shared PROPERTIES OUTPUT_NAME paddle_fluid_c)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/capi/c_api.h"
#include <algorithm>
#include <vector>
#include "paddle/fluid/inference/capi/c_api_internal.h"
using paddle::ConvertToPaddleDType;
using paddle::ConvertToPDDataType;
using paddle::ConvertToACPrecision;
extern "C" {
PD_PaddleBuf* PD_NewPaddleBuf() { return new PD_PaddleBuf; }
void PD_DeletePaddleBuf(PD_PaddleBuf* buf) {
if (buf) {
delete buf;
buf = nullptr;
}
}
void PD_PaddleBufResize(PD_PaddleBuf* buf, size_t length) {
buf->buf.Resize(length);
}
void PD_PaddleBufReset(PD_PaddleBuf* buf, void* data, size_t length) {
buf->buf.Reset(data, length);
}
bool PD_PaddleBufEmpty(PD_PaddleBuf* buf) { return buf->buf.empty(); }
void* PD_PaddleBufData(PD_PaddleBuf* buf) { return buf->buf.data(); }
size_t PD_PaddleBufLength(PD_PaddleBuf* buf) { return buf->buf.length(); }
} // extern "C"
namespace paddle {
paddle::PaddleDType ConvertToPaddleDType(PD_DataType dtype) {
switch (dtype) {
case PD_FLOAT32:
return PD_PaddleDType::FLOAT32;
case PD_INT32:
return PD_PaddleDType::INT32;
case PD_INT64:
return PD_PaddleDType::INT64;
case PD_UINT8:
return PD_PaddleDType::UINT8;
default:
CHECK(false) << "Unsupport dtype.";
return PD_PaddleDType::FLOAT32;
}
}
PD_DataType ConvertToPDDataType(PD_PaddleDType dtype) {
switch (dtype) {
case PD_PaddleDType::FLOAT32:
return PD_DataType::PD_FLOAT32;
case PD_PaddleDType::INT32:
return PD_DataType::PD_INT32;
case PD_PaddleDType::INT64:
return PD_DataType::PD_INT64;
case PD_PaddleDType::UINT8:
return PD_DataType::PD_UINT8;
default:
CHECK(false) << "Unsupport dtype.";
return PD_DataType::PD_UNKDTYPE;
}
}
PD_ACPrecision ConvertToACPrecision(Precision dtype) {
switch (dtype) {
case Precision::kFloat32:
return PD_ACPrecision::kFloat32;
case Precision::kInt8:
return PD_ACPrecision::kInt8;
case Precision::kHalf:
return PD_ACPrecision::kHalf;
default:
CHECK(false) << "Unsupport precision.";
return PD_ACPrecision::kFloat32;
}
}
} // namespace paddle
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#if defined(_WIN32)
#ifdef PADDLE_ON_INFERENCE
#define PADDLE_CAPI_EXPORT __declspec(dllexport)
#else
#define PADDLE_CAPI_EXPORT __declspec(dllimport)
#endif // PADDLE_ON_INFERENCE
#else
#define PADDLE_CAPI_EXPORT __attribute__((visibility("default")))
#endif // _WIN32
#ifdef __cplusplus
extern "C" {
#endif
enum PD_DataType { PD_FLOAT32, PD_INT32, PD_INT64, PD_UINT8, PD_UNKDTYPE };
typedef struct PD_PaddleBuf PD_PaddleBuf;
typedef struct PD_AnalysisConfig PD_AnalysisConfig;
typedef struct PD_ZeroCopyData {
char* name = new char[50];
void* data;
PD_DataType dtype;
int* shape;
int shape_size;
} PD_ZeroCopyData;
typedef struct InTensorShape {
char* name;
int* tensor_shape;
int shape_size;
} InTensorShape;
PADDLE_CAPI_EXPORT extern PD_PaddleBuf* PD_NewPaddleBuf();
PADDLE_CAPI_EXPORT extern void PD_DeletePaddleBuf(PD_PaddleBuf* buf);
PADDLE_CAPI_EXPORT extern void PD_PaddleBufResize(PD_PaddleBuf* buf,
size_t length);
PADDLE_CAPI_EXPORT extern void PD_PaddleBufReset(PD_PaddleBuf* buf, void* data,
size_t length);
PADDLE_CAPI_EXPORT extern bool PD_PaddleBufEmpty(PD_PaddleBuf* buf);
PADDLE_CAPI_EXPORT extern void* PD_PaddleBufData(PD_PaddleBuf* buf);
PADDLE_CAPI_EXPORT extern size_t PD_PaddleBufLength(PD_PaddleBuf* buf);
// PaddleTensor
typedef struct PD_Tensor PD_Tensor;
PADDLE_CAPI_EXPORT extern PD_Tensor* PD_NewPaddleTensor();
PADDLE_CAPI_EXPORT extern void PD_DeletePaddleTensor(PD_Tensor* tensor);
PADDLE_CAPI_EXPORT extern void PD_SetPaddleTensorName(PD_Tensor* tensor,
char* name);
PADDLE_CAPI_EXPORT extern void PD_SetPaddleTensorDType(PD_Tensor* tensor,
PD_DataType dtype);
PADDLE_CAPI_EXPORT extern void PD_SetPaddleTensorData(PD_Tensor* tensor,
PD_PaddleBuf* buf);
PADDLE_CAPI_EXPORT extern void PD_SetPaddleTensorShape(PD_Tensor* tensor,
int* shape, int size);
PADDLE_CAPI_EXPORT extern const char* PD_GetPaddleTensorName(
const PD_Tensor* tensor);
PADDLE_CAPI_EXPORT extern PD_DataType PD_GetPaddleTensorDType(
const PD_Tensor* tensor);
PADDLE_CAPI_EXPORT extern PD_PaddleBuf* PD_GetPaddleTensorData(
const PD_Tensor* tensor);
PADDLE_CAPI_EXPORT extern int* PD_GetPaddleTensorShape(const PD_Tensor* tensor,
int** size);
// AnalysisPredictor
PADDLE_CAPI_EXPORT extern bool PD_PredictorRun(const PD_AnalysisConfig* config,
PD_Tensor* inputs, int in_size,
PD_Tensor* output_data,
int** out_size, int batch_size);
PADDLE_CAPI_EXPORT extern bool PD_PredictorZeroCopyRun(
const PD_AnalysisConfig* config, PD_ZeroCopyData* inputs, int in_size,
PD_ZeroCopyData* output, int** out_size);
// AnalysisConfig
enum Precision { kFloat32 = 0, kInt8, kHalf };
PADDLE_CAPI_EXPORT extern PD_AnalysisConfig* PD_NewAnalysisConfig();
PADDLE_CAPI_EXPORT extern void PD_DeleteAnalysisConfig(
PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SetModel(PD_AnalysisConfig* config,
const char* model_dir,
const char* params_path = NULL);
PADDLE_CAPI_EXPORT
extern void PD_SetProgFile(PD_AnalysisConfig* config, const char* x);
PADDLE_CAPI_EXPORT extern void PD_SetParamsFile(PD_AnalysisConfig* config,
const char* x);
PADDLE_CAPI_EXPORT extern void PD_SetOptimCacheDir(PD_AnalysisConfig* config,
const char* opt_cache_dir);
PADDLE_CAPI_EXPORT extern const char* PD_ModelDir(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern const char* PD_ProgFile(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern const char* PD_ParamsFile(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_EnableUseGpu(
PD_AnalysisConfig* config, uint64_t memory_pool_init_size_mb,
int device_id = 0);
PADDLE_CAPI_EXPORT extern void PD_DisableGpu(PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern bool PD_UseGpu(const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern int PD_GpuDeviceId(const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern int PD_MemoryPoolInitSizeMb(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern float PD_FractionOfGpuMemoryForPool(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_EnableCUDNN(PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern bool PD_CudnnEnabled(const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SwitchIrOptim(PD_AnalysisConfig* config,
bool x = true);
PADDLE_CAPI_EXPORT extern bool PD_IrOptim(const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SwitchUseFeedFetchOps(
PD_AnalysisConfig* config, bool x = true);
PADDLE_CAPI_EXPORT extern bool PD_UseFeedFetchOpsEnabled(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SwitchSpecifyInputNames(
PD_AnalysisConfig* config, bool x = true);
PADDLE_CAPI_EXPORT extern bool PD_SpecifyInputName(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_EnableTensorRtEngine(
PD_AnalysisConfig* config, int workspace_size = 1 << 20,
int max_batch_size = 1, int min_subgraph_size = 3,
Precision precision = Precision::kFloat32, bool use_static = false,
bool use_calib_mode = false);
PADDLE_CAPI_EXPORT extern bool PD_TensorrtEngineEnabled(
const PD_AnalysisConfig* config);
typedef struct PD_MaxInputShape {
char* name;
int* shape;
int shape_size;
} PD_MaxInputShape;
PADDLE_CAPI_EXPORT extern void PD_EnableAnakinEngine(
PD_AnalysisConfig* config, int max_batch_size = 1,
PD_MaxInputShape* max_input_shape = NULL, int max_input_shape_size = 0,
int min_subgraph_size = 6, Precision precision = Precision::kFloat32,
bool auto_config_layout = false, char** passes_filter = NULL,
int passes_filter_size = 0, char** ops_filter = NULL,
int ops_filter_size = 0);
PADDLE_CAPI_EXPORT extern bool PD_AnakinEngineEnabled(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SwitchIrDebug(PD_AnalysisConfig* config,
bool x = true);
PADDLE_CAPI_EXPORT extern void PD_EnableNgraph(PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern bool PD_NgraphEnabled(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_EnableMKLDNN(PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SetMkldnnCacheCapacity(
PD_AnalysisConfig* config, int capacity);
PADDLE_CAPI_EXPORT extern bool PD_MkldnnEnabled(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SetCpuMathLibraryNumThreads(
PD_AnalysisConfig* config, int cpu_math_library_num_threads);
PADDLE_CAPI_EXPORT extern int PD_CpuMathLibraryNumThreads(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_EnableMkldnnQuantizer(
PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern bool PD_MkldnnQuantizerEnabled(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SetModelBuffer(PD_AnalysisConfig* config,
const char* prog_buffer,
size_t prog_buffer_size,
const char* params_buffer,
size_t params_buffer_size);
PADDLE_CAPI_EXPORT extern bool PD_ModelFromMemory(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_EnableMemoryOptim(PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern bool PD_MemoryOptimEnabled(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_EnableProfile(PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern bool PD_ProfileEnabled(
const PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern void PD_SetInValid(PD_AnalysisConfig* config);
PADDLE_CAPI_EXPORT extern bool PD_IsValid(const PD_AnalysisConfig* config);
#ifdef __cplusplus
} // extern "C"
#endif
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_api.h"
#include "paddle/fluid/platform/enforce.h"
using PD_PaddleDType = paddle::PaddleDType;
using PD_ACPrecision = paddle::AnalysisConfig::Precision;
struct PD_AnalysisConfig {
paddle::AnalysisConfig config;
};
struct PD_Tensor {
paddle::PaddleTensor tensor;
};
struct PD_PaddleBuf {
paddle::PaddleBuf buf;
};
namespace paddle {
paddle::PaddleDType ConvertToPaddleDType(PD_DataType dtype);
PD_DataType ConvertToPDDataType(PD_PaddleDType dtype);
PD_ACPrecision ConvertToACPrecision(Precision dtype);
}
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/capi/c_api_internal.h"
using paddle::ConvertToPaddleDType;
using paddle::ConvertToPDDataType;
using paddle::ConvertToACPrecision;
extern "C" {
PD_AnalysisConfig* PD_NewAnalysisConfig() { return new PD_AnalysisConfig; } //
void PD_DeleteAnalysisConfig(PD_AnalysisConfig* config) {
if (config) {
delete config;
config = nullptr;
}
}
void PD_SetModel(PD_AnalysisConfig* config, const char* model_dir,
const char* params_path) {
LOG(INFO) << model_dir;
PADDLE_ENFORCE_NOT_NULL(config);
LOG(INFO) << std::string(model_dir);
if (!params_path) {
config->config.SetModel(std::string(model_dir));
} else {
config->config.SetModel(std::string(model_dir), std::string(params_path));
}
}
void PD_SetProgFile(PD_AnalysisConfig* config, const char* x) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SetProgFile(std::string(x));
}
void PD_SetParamsFile(PD_AnalysisConfig* config, const char* x) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SetParamsFile(std::string(x));
}
void PD_SetOptimCacheDir(PD_AnalysisConfig* config, const char* opt_cache_dir) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SetOptimCacheDir(std::string(opt_cache_dir));
}
const char* PD_ModelDir(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.model_dir().c_str();
}
const char* PD_ProgFile(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.prog_file().c_str();
}
const char* PD_ParamsFile(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.params_file().c_str();
}
void PD_EnableUseGpu(PD_AnalysisConfig* config,
uint64_t memory_pool_init_size_mb, int device_id) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.EnableUseGpu(memory_pool_init_size_mb, device_id);
}
void PD_DisableGpu(PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.DisableGpu();
}
bool PD_UseGpu(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.use_gpu();
}
int PD_GpuDeviceId(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.gpu_device_id();
}
int PD_MemoryPoolInitSizeMb(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.memory_pool_init_size_mb();
}
float PD_FractionOfGpuMemoryForPool(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.fraction_of_gpu_memory_for_pool();
}
void PD_EnableCUDNN(PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.EnableCUDNN();
}
bool PD_CudnnEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.cudnn_enabled();
}
void PD_SwitchIrOptim(PD_AnalysisConfig* config, bool x) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SwitchIrOptim(x);
}
bool PD_IrOptim(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.ir_optim();
}
void PD_SwitchUseFeedFetchOps(PD_AnalysisConfig* config, bool x) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SwitchUseFeedFetchOps(x);
}
bool PD_UseFeedFetchOpsEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.use_feed_fetch_ops_enabled();
}
void PD_SwitchSpecifyInputNames(PD_AnalysisConfig* config, bool x) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SwitchSpecifyInputNames(x);
}
bool PD_SpecifyInputName(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.specify_input_name();
}
void PD_EnableTensorRtEngine(PD_AnalysisConfig* config, int workspace_size,
int max_batch_size, int min_subgraph_size,
Precision precision, bool use_static,
bool use_calib_mode) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.EnableTensorRtEngine(
workspace_size, max_batch_size, min_subgraph_size,
paddle::ConvertToACPrecision(precision), use_static, use_calib_mode);
}
bool PD_TensorrtEngineEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.tensorrt_engine_enabled();
}
void PD_EnableAnakinEngine(PD_AnalysisConfig* config, int max_batch_size,
PD_MaxInputShape* max_input_shape,
int max_input_shape_size, int min_subgraph_size,
Precision precision, bool auto_config_layout,
char** passes_filter, int passes_filter_size,
char** ops_filter, int ops_filter_size) {
PADDLE_ENFORCE_NOT_NULL(config);
std::map<std::string, std::vector<int>> mis;
if (max_input_shape) {
for (int i = 0; i < max_input_shape_size; ++i) {
std::vector<int> tmp_shape;
tmp_shape.assign(
max_input_shape[i].shape,
max_input_shape[i].shape + max_input_shape[i].shape_size);
mis[std::string(max_input_shape[i].name)] = std::move(tmp_shape);
}
}
std::vector<std::string> pf;
std::vector<std::string> of;
if (passes_filter) {
pf.assign(passes_filter, passes_filter + passes_filter_size);
}
if (ops_filter) {
of.assign(ops_filter, ops_filter + ops_filter_size);
}
config->config.EnableAnakinEngine(max_batch_size, mis, min_subgraph_size,
paddle::ConvertToACPrecision(precision),
auto_config_layout, pf, of);
}
bool PD_AnakinEngineEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.anakin_engine_enabled();
}
void PD_SwitchIrDebug(PD_AnalysisConfig* config, bool x) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SwitchIrDebug(x);
}
void PD_EnableNgraph(PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.EnableNgraph();
}
bool PD_NgraphEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.ngraph_enabled();
}
void PD_EnableMKLDNN(PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.EnableMKLDNN();
}
void PD_SetMkldnnCacheCapacity(PD_AnalysisConfig* config, int capacity) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SetMkldnnCacheCapacity(capacity);
}
bool PD_MkldnnEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.mkldnn_enabled();
}
void PD_SetCpuMathLibraryNumThreads(PD_AnalysisConfig* config,
int cpu_math_library_num_threads) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SetCpuMathLibraryNumThreads(cpu_math_library_num_threads);
}
int PD_CpuMathLibraryNumThreads(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.cpu_math_library_num_threads();
}
void PD_EnableMkldnnQuantizer(PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.EnableMkldnnQuantizer();
}
bool PD_MkldnnQuantizerEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.mkldnn_quantizer_enabled();
}
void PD_SetModelBuffer(PD_AnalysisConfig* config, const char* prog_buffer,
size_t prog_buffer_size, const char* params_buffer,
size_t params_buffer_size) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SetModelBuffer(prog_buffer, prog_buffer_size, params_buffer,
params_buffer_size);
}
bool PD_ModelFromMemory(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.model_from_memory();
}
void PD_EnableMemoryOptim(PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.EnableMemoryOptim();
}
bool PD_MemoryOptimEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.enable_memory_optim();
}
void PD_EnableProfile(PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.EnableProfile();
}
bool PD_ProfileEnabled(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.profile_enabled();
}
void PD_SetInValid(PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
config->config.SetInValid();
}
bool PD_IsValid(const PD_AnalysisConfig* config) {
PADDLE_ENFORCE_NOT_NULL(config);
return config->config.is_valid();
}
} // extern "C"
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <map>
#include <numeric>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/capi/c_api_internal.h"
using paddle::ConvertToPaddleDType;
using paddle::ConvertToPDDataType;
using paddle::ConvertToACPrecision;
extern "C" {
bool PD_PredictorRun(const PD_AnalysisConfig* config, PD_Tensor* inputs,
int in_size, PD_Tensor* output_data, int** out_size,
int batch_size) {
auto predictor = paddle::CreatePaddlePredictor(config->config);
std::vector<paddle::PaddleTensor> in;
for (int i = 0; i < in_size; ++i) {
in.emplace_back(inputs->tensor);
}
std::vector<paddle::PaddleTensor> out;
if (predictor->Run(in, &out, batch_size)) {
int osize = out.size();
for (int i = 0; i < osize; ++i) {
output_data[i].tensor = out[i];
}
*out_size = &osize;
return true;
}
return false;
}
bool PD_PredictorZeroCopyRun(const PD_AnalysisConfig* config,
PD_ZeroCopyData* inputs, int in_size,
PD_ZeroCopyData* output, int** out_size) {
auto predictor = paddle::CreatePaddlePredictor(config->config);
auto input_names = predictor->GetInputNames();
PADDLE_ENFORCE_EQ(
input_names.size(), in_size,
"The number of input and the number of model's input must match. ");
for (int i = 0; i < in_size; ++i) {
auto input_t = predictor->GetInputTensor(inputs[i].name);
std::vector<int> tensor_shape;
tensor_shape.assign(inputs[i].shape,
inputs[i].shape + inputs[i].shape_size);
input_t->Reshape(tensor_shape);
switch (inputs[i].dtype) {
case PD_FLOAT32:
input_t->copy_from_cpu(static_cast<float*>(inputs[i].data));
break;
case PD_INT32:
input_t->copy_from_cpu(static_cast<int32_t*>(inputs[i].data));
break;
case PD_INT64:
input_t->copy_from_cpu(static_cast<int64_t*>(inputs[i].data));
break;
case PD_UINT8:
input_t->copy_from_cpu(static_cast<uint8_t*>(inputs[i].data));
break;
default:
CHECK(false) << "Unsupport data type.";
break;
}
}
CHECK(predictor->ZeroCopyRun());
auto output_names = predictor->GetOutputNames();
int osize = output_names.size();
*out_size = &osize;
output = new PD_ZeroCopyData[osize];
for (int i = 0; i < osize; ++i) {
LOG(INFO) << 1;
output[i].name = new char[output_names[i].length() + 1];
snprintf(output[i].name, output_names[i].length() + 1, "%s",
output_names[i].c_str());
auto output_t = predictor->GetOutputTensor(output_names[i]);
output[i].dtype = ConvertToPDDataType(output_t->type());
std::vector<int> output_shape = output_t->shape();
output[i].shape = new int[output_shape.size()];
output[i].shape = output_shape.data();
output[i].shape_size = output_shape.size();
switch (output[i].dtype) {
case PD_FLOAT32: {
std::vector<float> out_data;
int out_num = std::accumulate(output_shape.begin(), output_shape.end(),
1, std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
output[i].data = static_cast<void*>(out_data.data());
} break;
case PD_INT32: {
std::vector<int32_t> out_data;
int out_num = std::accumulate(output_shape.begin(), output_shape.end(),
1, std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
output[i].data = static_cast<void*>(out_data.data());
} break;
case PD_INT64: {
std::vector<int64_t> out_data;
int out_num = std::accumulate(output_shape.begin(), output_shape.end(),
1, std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
output[i].data = static_cast<void*>(out_data.data());
} break;
case PD_UINT8: {
std::vector<uint8_t> out_data;
int out_num = std::accumulate(output_shape.begin(), output_shape.end(),
1, std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
output[i].data = static_cast<void*>(out_data.data());
} break;
default:
CHECK(false) << "Unsupport data type.";
break;
}
}
return true;
}
} // extern "C"
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <algorithm>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/capi/c_api_internal.h"
using paddle::ConvertToPaddleDType;
using paddle::ConvertToPDDataType;
using paddle::ConvertToACPrecision;
extern "C" {
// PaddleTensor
PD_Tensor* PD_NewPaddleTensor() { return new PD_Tensor; }
void PD_DeletePaddleTensor(PD_Tensor* tensor) {
if (tensor) {
delete tensor;
tensor = nullptr;
}
}
void PD_SetPaddleTensorName(PD_Tensor* tensor, char* name) {
tensor->tensor.name = std::string(name);
}
void PD_SetPaddleTensorDType(PD_Tensor* tensor, PD_DataType dtype) {
tensor->tensor.dtype = paddle::ConvertToPaddleDType(dtype);
}
void PD_SetPaddleTensorData(PD_Tensor* tensor, PD_PaddleBuf* buf) {
tensor->tensor.data = buf->buf;
}
void PD_SetPaddleTensorShape(PD_Tensor* tensor, int* shape, int size) {
tensor->tensor.shape.assign(shape, shape + size);
}
const char* PD_GetPaddleTensorName(const PD_Tensor* tensor) {
return tensor->tensor.name.c_str();
}
PD_DataType PD_GetPaddleTensorDType(const PD_Tensor* tensor) {
return ConvertToPDDataType(tensor->tensor.dtype);
}
PD_PaddleBuf* PD_GetPaddleTensorData(const PD_Tensor* tensor) {
PD_PaddleBuf* ret = PD_NewPaddleBuf();
ret->buf = tensor->tensor.data;
return ret;
}
int* PD_GetPaddleTensorShape(const PD_Tensor* tensor, int** size) {
std::vector<int> shape = tensor->tensor.shape;
int s = shape.size();
*size = &s;
return shape.data();
}
} // extern "C"
...@@ -283,4 +283,29 @@ if(WITH_GPU AND TENSORRT_FOUND) ...@@ -283,4 +283,29 @@ if(WITH_GPU AND TENSORRT_FOUND)
inference_analysis_test(trt_cascade_rcnn_test SRCS trt_cascade_rcnn_test.cc inference_analysis_test(trt_cascade_rcnn_test SRCS trt_cascade_rcnn_test.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${TRT_MODEL_INSTALL_DIR}/trt_inference_test_models) ARGS --infer_model=${TRT_MODEL_INSTALL_DIR}/trt_inference_test_models)
inference_analysis_test(test_analyzer_capi_gpu SRCS analyzer_capi_gpu_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} paddle_fluid_c
ARGS --infer_model=${TRT_MODEL_INSTALL_DIR}/trt_inference_test_models)
endif()
set(CAPI_MODEL_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/capi_tests_models")
if (NOT EXISTS ${CAPI_MODEL_INSTALL_DIR})
inference_download_and_uncompress(${CAPI_MODEL_INSTALL_DIR} ${INFERENCE_URL}/tensorrt_test "trt_inference_test_models.tar.gz")
endif() endif()
inference_analysis_test(test_analyzer_capi SRCS analyzer_capi_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} paddle_fluid_c
ARGS --infer_model=${CAPI_MODEL_INSTALL_DIR}/trt_inference_test_models)
set(CAPI_MODEL_INSTALL_PD_DIR "${INFERENCE_DEMO_INSTALL_DIR}/capi_mobilenet")
if (NOT EXISTS ${CAPI_MODEL_INSTALL_PD_DIR})
inference_download_and_uncompress(${CAPI_MODEL_INSTALL_PD_DIR} "http://paddlemodels.bj.bcebos.com/" "inference-vis-demos%2Fmobilenet.tar.gz")
endif()
inference_analysis_test(test_analyzer_capi_pd_tensor SRCS analyzer_capi_pd_tensor_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} paddle_fluid_c
ARGS --infer_model=${CAPI_MODEL_INSTALL_PD_DIR}/model)
if(WITH_MKLDNN)
inference_analysis_test(test_analyzer_capi_int SRCS analyzer_capi_int_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} paddle_fluid_c
ARGS --infer_model=${INT8_DATA_DIR}/resnet50/model)
endif()
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
TEST(PD_AnalysisConfig, use_gpu) {
std::string model_dir = FLAGS_infer_model + "/mobilenet";
PD_AnalysisConfig *config = PD_NewAnalysisConfig();
PD_DisableGpu(config);
PD_SetCpuMathLibraryNumThreads(config, 10);
int num_thread = PD_CpuMathLibraryNumThreads(config);
CHECK(10 == num_thread) << "NO";
PD_SwitchUseFeedFetchOps(config, false);
PD_SwitchSpecifyInputNames(config, true);
PD_SwitchIrDebug(config, true);
PD_SetModel(config, model_dir.c_str());
PD_SetOptimCacheDir(config, (FLAGS_infer_model + "/OptimCacheDir").c_str());
const char *model_dir_ = PD_ModelDir(config);
LOG(INFO) << model_dir_;
PD_EnableUseGpu(config, 100, 0);
bool use_gpu = PD_UseGpu(config);
CHECK(use_gpu) << "NO";
int device = PD_GpuDeviceId(config);
CHECK(0 == device) << "NO";
int init_size = PD_MemoryPoolInitSizeMb(config);
CHECK(100 == init_size) << "NO";
float frac = PD_FractionOfGpuMemoryForPool(config);
LOG(INFO) << frac;
PD_EnableCUDNN(config);
bool cudnn = PD_CudnnEnabled(config);
CHECK(cudnn) << "NO";
PD_SwitchIrOptim(config, true);
bool ir_optim = PD_IrOptim(config);
CHECK(ir_optim) << "NO";
PD_EnableTensorRtEngine(config);
bool trt_enable = PD_TensorrtEngineEnabled(config);
CHECK(trt_enable) << "NO";
PD_EnableNgraph(config);
bool ngraph_enable = PD_NgraphEnabled(config);
LOG(INFO) << ngraph_enable << " Ngraph";
PD_EnableMemoryOptim(config);
bool memory_optim_enable = PD_MemoryOptimEnabled(config);
CHECK(memory_optim_enable) << "NO";
PD_EnableProfile(config);
bool profiler_enable = PD_ProfileEnabled(config);
CHECK(profiler_enable) << "NO";
PD_SetInValid(config);
bool is_valid = PD_IsValid(config);
CHECK(!is_valid) << "NO";
PD_DeleteAnalysisConfig(config);
}
TEST(PD_AnalysisConfig, trt_int8) {
std::string model_dir = FLAGS_infer_model + "/mobilenet";
PD_AnalysisConfig *config = PD_NewAnalysisConfig();
PD_EnableUseGpu(config, 100, 0);
PD_EnableTensorRtEngine(config, 1 << 20, 1, 3, Precision::kInt8, false, true);
bool trt_enable = PD_TensorrtEngineEnabled(config);
CHECK(trt_enable) << "NO";
PD_DeleteAnalysisConfig(config);
}
TEST(PD_AnalysisConfig, trt_fp16) {
std::string model_dir = FLAGS_infer_model + "/mobilenet";
PD_AnalysisConfig *config = PD_NewAnalysisConfig();
PD_EnableUseGpu(config, 100, 0);
PD_EnableTensorRtEngine(config, 1 << 20, 1, 3, Precision::kHalf, false,
false);
bool trt_enable = PD_TensorrtEngineEnabled(config);
CHECK(trt_enable) << "NO";
PD_DeleteAnalysisConfig(config);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <fstream>
#include <iostream>
#include <string>
#include <typeinfo>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
template <typename T>
void zero_copy_run() {
std::string model_dir = FLAGS_infer_model;
PD_AnalysisConfig *config = PD_NewAnalysisConfig();
PD_DisableGpu(config);
PD_SetCpuMathLibraryNumThreads(config, 10);
PD_SwitchUseFeedFetchOps(config, false);
PD_SwitchSpecifyInputNames(config, true);
PD_SwitchIrDebug(config, true);
PD_SetModel(config, model_dir.c_str()); //, params_file1.c_str());
bool use_feed_fetch = PD_UseFeedFetchOpsEnabled(config);
CHECK(!use_feed_fetch) << "NO";
bool specify_input_names = PD_SpecifyInputName(config);
CHECK(specify_input_names) << "NO";
const int batch_size = 1;
const int channels = 3;
const int height = 224;
const int width = 224;
T input[batch_size * channels * height * width] = {0};
int shape[4] = {batch_size, channels, height, width};
int shape_size = 4;
int in_size = 2;
int *out_size;
PD_ZeroCopyData *inputs = new PD_ZeroCopyData[2];
PD_ZeroCopyData *outputs = new PD_ZeroCopyData;
inputs[0].data = static_cast<void *>(input);
std::string nm = typeid(T).name();
if ("f" == nm) {
inputs[0].dtype = PD_FLOAT32;
} else if ("i" == nm) {
inputs[0].dtype = PD_INT32;
} else if ("x" == nm) {
inputs[0].dtype = PD_INT64;
} else if ("h" == nm) {
inputs[0].dtype = PD_UINT8;
} else {
CHECK(false) << "Unsupport dtype. ";
}
inputs[0].name = new char[6];
inputs[0].name[0] = 'i';
inputs[0].name[1] = 'm';
inputs[0].name[2] = 'a';
inputs[0].name[3] = 'g';
inputs[0].name[4] = 'e';
inputs[0].name[5] = '\0';
inputs[0].shape = shape;
inputs[0].shape_size = shape_size;
int *label = new int[1];
label[0] = 0;
inputs[1].data = static_cast<void *>(label);
inputs[1].dtype = PD_INT64;
inputs[1].name = new char[6];
inputs[1].name[0] = 'l';
inputs[1].name[1] = 'a';
inputs[1].name[2] = 'b';
inputs[1].name[3] = 'e';
inputs[1].name[4] = 'l';
inputs[1].name[5] = '\0';
int label_shape[2] = {1, 1};
int label_shape_size = 2;
inputs[1].shape = label_shape;
inputs[1].shape_size = label_shape_size;
PD_PredictorZeroCopyRun(config, inputs, in_size, outputs, &out_size);
}
TEST(PD_ZeroCopyRun, zero_copy_run) {
// zero_copy_run<int32_t>();
// zero_copy_run<int64_t>();
zero_copy_run<float>();
}
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
void PD_run() {
PD_AnalysisConfig* config = PD_NewAnalysisConfig();
std::string prog_file = FLAGS_infer_model + "/__model__";
std::string params_file = FLAGS_infer_model + "/__params__";
PD_SetModel(config, prog_file.c_str(), params_file.c_str());
PD_SetProgFile(config, prog_file.c_str());
PD_SetParamsFile(config, params_file.c_str());
LOG(INFO) << PD_ProgFile(config);
LOG(INFO) << PD_ParamsFile(config);
PD_Tensor* input = PD_NewPaddleTensor();
PD_PaddleBuf* buf = PD_NewPaddleBuf();
LOG(INFO) << "PaddleBuf empty: " << PD_PaddleBufEmpty(buf);
int batch = 1;
int channel = 3;
int height = 300;
int width = 300;
int shape[4] = {batch, channel, height, width};
int shape_size = 4;
float* data = new float[batch * channel * height * width];
PD_PaddleBufReset(buf, static_cast<void*>(data),
sizeof(float) * (batch * channel * height * width));
char name[6] = {'i', 'm', 'a', 'g', 'e', '\0'};
PD_SetPaddleTensorName(input, name);
PD_SetPaddleTensorDType(input, PD_FLOAT32);
PD_SetPaddleTensorShape(input, shape, shape_size);
PD_SetPaddleTensorData(input, buf);
PD_Tensor* out_data = PD_NewPaddleTensor();
int* out_size;
PD_PredictorRun(config, input, 1, out_data, &out_size, 1);
LOG(INFO) << *out_size;
LOG(INFO) << PD_GetPaddleTensorName(out_data);
LOG(INFO) << PD_GetPaddleTensorDType(out_data);
PD_PaddleBuf* b = PD_GetPaddleTensorData(out_data);
LOG(INFO) << PD_PaddleBufLength(b);
float* result = static_cast<float*>(PD_PaddleBufData(b));
LOG(INFO) << *result;
PD_PaddleBufResize(b, 500);
PD_DeletePaddleTensor(input);
int* size;
PD_GetPaddleTensorShape(out_data, &size);
PD_DeletePaddleBuf(buf);
}
TEST(PD_Tensor, PD_run) { PD_run(); }
TEST(PD_Tensor, int32) {
PD_Tensor* input = PD_NewPaddleTensor();
PD_SetPaddleTensorDType(input, PD_INT32);
LOG(INFO) << PD_GetPaddleTensorDType(input);
}
TEST(PD_Tensor, int64) {
PD_Tensor* input = PD_NewPaddleTensor();
PD_SetPaddleTensorDType(input, PD_INT64);
LOG(INFO) << PD_GetPaddleTensorDType(input);
}
TEST(PD_Tensor, int8) {
PD_Tensor* input = PD_NewPaddleTensor();
PD_SetPaddleTensorDType(input, PD_UINT8);
LOG(INFO) << PD_GetPaddleTensorDType(input);
}
std::string read_file(std::string filename) {
std::ifstream file(filename);
return std::string((std::istreambuf_iterator<char>(file)),
std::istreambuf_iterator<char>());
}
void buffer_run() {
PD_AnalysisConfig* config = PD_NewAnalysisConfig();
std::string prog_file = FLAGS_infer_model + "/__model__";
std::string params_file = FLAGS_infer_model + "/__params__";
std::string prog_str = read_file(prog_file);
std::string params_str = read_file(params_file);
PD_SetModelBuffer(config, prog_str.c_str(), prog_str.size(),
params_str.c_str(), params_str.size());
LOG(INFO) << PD_ProgFile(config);
LOG(INFO) << PD_ParamsFile(config);
CHECK(PD_ModelFromMemory(config)) << "NO";
PD_Tensor* input = PD_NewPaddleTensor();
PD_PaddleBuf* buf = PD_NewPaddleBuf();
LOG(INFO) << "PaddleBuf empty: " << PD_PaddleBufEmpty(buf);
int batch = 1;
int channel = 3;
int height = 300;
int width = 300;
int shape[4] = {batch, channel, height, width};
int shape_size = 4;
float* data = new float[batch * channel * height * width];
PD_PaddleBufReset(buf, static_cast<void*>(data),
sizeof(float) * (batch * channel * height * width));
char name[6] = {'i', 'm', 'a', 'g', 'e', '\0'};
PD_SetPaddleTensorName(input, name);
PD_SetPaddleTensorDType(input, PD_FLOAT32);
PD_SetPaddleTensorShape(input, shape, shape_size);
PD_SetPaddleTensorData(input, buf);
PD_Tensor* out_data = PD_NewPaddleTensor();
int* out_size;
PD_PredictorRun(config, input, 1, out_data, &out_size, 1);
LOG(INFO) << *out_size;
LOG(INFO) << PD_GetPaddleTensorName(out_data);
LOG(INFO) << PD_GetPaddleTensorDType(out_data);
PD_PaddleBuf* b = PD_GetPaddleTensorData(out_data);
LOG(INFO) << PD_PaddleBufLength(b);
float* result = static_cast<float*>(PD_PaddleBufData(b));
LOG(INFO) << *result;
PD_PaddleBufResize(b, 500);
PD_DeletePaddleTensor(input);
PD_DeletePaddleBuf(buf);
}
TEST(SetModelBuffer, read) { buffer_run(); }
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <fstream>
#include <iostream>
#include <string>
#include <typeinfo>
#include <vector>
#include "paddle/fluid/inference/capi/c_api.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
template <typename T>
void zero_copy_run() {
std::string model_dir = FLAGS_infer_model + "/mobilenet";
PD_AnalysisConfig *config = PD_NewAnalysisConfig();
PD_DisableGpu(config);
PD_SetCpuMathLibraryNumThreads(config, 10);
PD_SwitchUseFeedFetchOps(config, false);
PD_SwitchSpecifyInputNames(config, true);
PD_SwitchIrDebug(config, true);
PD_SetModel(config, model_dir.c_str()); //, params_file1.c_str());
bool use_feed_fetch = PD_UseFeedFetchOpsEnabled(config);
CHECK(!use_feed_fetch) << "NO";
bool specify_input_names = PD_SpecifyInputName(config);
CHECK(specify_input_names) << "NO";
const int batch_size = 1;
const int channels = 3;
const int height = 224;
const int width = 224;
T input[batch_size * channels * height * width] = {0};
int shape[4] = {batch_size, channels, height, width};
int shape_size = 4;
int in_size = 1;
int *out_size;
PD_ZeroCopyData *inputs = new PD_ZeroCopyData;
PD_ZeroCopyData *outputs = new PD_ZeroCopyData;
inputs->data = static_cast<void *>(input);
std::string nm = typeid(T).name();
if ("f" == nm) {
inputs->dtype = PD_FLOAT32;
} else if ("i" == nm) {
inputs->dtype = PD_INT32;
} else if ("x" == nm) {
inputs->dtype = PD_INT64;
} else if ("h" == nm) {
inputs->dtype = PD_UINT8;
} else {
CHECK(false) << "Unsupport dtype. ";
}
inputs->name = new char[2];
inputs->name[0] = 'x';
inputs->name[1] = '\0';
LOG(INFO) << inputs->name;
inputs->shape = shape;
inputs->shape_size = shape_size;
PD_PredictorZeroCopyRun(config, inputs, in_size, outputs, &out_size);
}
TEST(PD_ZeroCopyRun, zero_copy_run) { zero_copy_run<float>(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(PD_AnalysisConfig, profile_mkldnn) {
std::string model_dir = FLAGS_infer_model + "/mobilenet";
PD_AnalysisConfig *config = PD_NewAnalysisConfig();
PD_DisableGpu(config);
PD_SetCpuMathLibraryNumThreads(config, 10);
PD_SwitchUseFeedFetchOps(config, false);
PD_SwitchSpecifyInputNames(config, true);
PD_SwitchIrDebug(config, true);
PD_EnableMKLDNN(config);
bool mkldnn_enable = PD_MkldnnEnabled(config);
CHECK(mkldnn_enable) << "NO";
PD_EnableMkldnnQuantizer(config);
bool quantizer_enable = PD_MkldnnQuantizerEnabled(config);
CHECK(quantizer_enable) << "NO";
PD_SetMkldnnCacheCapacity(config, 0);
PD_SetModel(config, model_dir.c_str());
PD_EnableAnakinEngine(config);
bool anakin_enable = PD_AnakinEngineEnabled(config);
LOG(INFO) << anakin_enable;
PD_DeleteAnalysisConfig(config);
}
#endif
} // namespace analysis
} // namespace inference
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册