提交 2ea6f478 编写于 作者: Q qiaolongfei

update the design of variable

上级 87ee6949
......@@ -47,7 +47,7 @@ message LoDTensorDesc {
## Definition of Variable in Python
In Python API, layer will take Variable as Input, and return Variable as Output.
In Python API, layer will take Variable as Input, and return Variable as Output. There should be a class `Variable` in python to help create and manage Variable.
```python
image = Variable(dims=[-1, 640, 480])
......@@ -55,27 +55,43 @@ image = Variable(dims=[-1, 640, 480])
fc1 = layer.fc(input=image, output_size=10)
fc2 = layer.fc(input=fc1, output_size=20)
```
There should be a class `Variable` in python to help create and manage Variable.
### what should class `Variable` Have
1. `name`.a name of string type is used to mark the value of the Variable.
1. `initializer`. Since our Tensor does not have value. we will always use some Operator to fullfill it when run. So we should have a inialize method to help add the init operator.
1. `operator`. Variable should record which operator produce itself. The reaon is:
- we use pd.eval(targets=[var1, var2]) to run the related ops to get the value of var1 and var2. var.op is used to trace the dependency of the current variable.
```python
import VarDesc
import LoDTensorDesc
import framework
def AddInitialOperator(variable, initializer):
# add an initialize Operator to graph to init this Variable
class Variable(object):
def __init__(self, name, dims, type):
def __init__(self, name, dims, type, initializer):
self._graph = get_default_graph()
self._name = name
self.op = None
tensor_desc = LoDTensorDesc(data_type=type, dims=dims)
_var_desc = VarDesc(name=name, lod_tensor=tensor_desc)
self._var = framework.CreateVar(_var_desc)
self._graph.add_var(self)
# add initial op according to initializer
if initializer is not None:
AddInitialOperator(self, initializer)
def dims(self):
return self._var.dims()
def data_type(self):
return self._var.data_type()
def to_proto(self):
pass
```
Then we can use this Variable to create a fc layer in Python.
......@@ -90,8 +106,8 @@ def flatten_size(X, num_flatten_dims):
return prod
def layer.fc(X, output_size, num_flatten_dims):
W = Variable(type=FP32, dims=[flatten_size(X, num_flatten_dims), output_size])
b = Variable(type=FP32, dims=[output_size])
W = Variable(pd.random_uniform(), type=FP32, dims=[flatten_size(X, num_flatten_dims), output_size])
b = Variable(pd.random_uniform(), type=FP32, dims=[output_size])
out = Variable(type=FP32)
y = operator.fc(X, W, b, output=out) # fc will put fc op input into out
pd.InferShape(y)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册