Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
2ddbc647
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2ddbc647
编写于
6月 20, 2022
作者:
zhouweiwei2014
提交者:
GitHub
6月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【Sparse】add new API/OP(csr->csr) of SparseTensor softmax (#43475)
* add new API/OP(csr->csr) of SparseTensor softmax * fix comment
上级
a4cfa5ae
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
802 addition
and
38 deletion
+802
-38
paddle/phi/kernels/sparse/cpu/softmax_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/softmax_grad_kernel.cc
+91
-0
paddle/phi/kernels/sparse/cpu/softmax_kernel.cc
paddle/phi/kernels/sparse/cpu/softmax_kernel.cc
+92
-0
paddle/phi/kernels/sparse/empty_kernel.cc
paddle/phi/kernels/sparse/empty_kernel.cc
+78
-0
paddle/phi/kernels/sparse/empty_kernel.h
paddle/phi/kernels/sparse/empty_kernel.h
+28
-0
paddle/phi/kernels/sparse/gpu/softmax_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/softmax_grad_kernel.cu
+102
-0
paddle/phi/kernels/sparse/gpu/softmax_kernel.cu
paddle/phi/kernels/sparse/gpu/softmax_kernel.cu
+116
-0
paddle/phi/kernels/sparse/softmax_grad_kernel.h
paddle/phi/kernels/sparse/softmax_grad_kernel.h
+30
-0
paddle/phi/kernels/sparse/softmax_kernel.h
paddle/phi/kernels/sparse/softmax_kernel.h
+29
-0
python/paddle/fluid/tests/unittests/test_sparse_softmax.py
python/paddle/fluid/tests/unittests/test_sparse_softmax.py
+77
-0
python/paddle/fluid/tests/unittests/test_sparse_unary_op.py
python/paddle/fluid/tests/unittests/test_sparse_unary_op.py
+1
-1
python/paddle/incubate/sparse/binary.py
python/paddle/incubate/sparse/binary.py
+1
-1
python/paddle/incubate/sparse/nn/__init__.py
python/paddle/incubate/sparse/nn/__init__.py
+2
-0
python/paddle/incubate/sparse/nn/functional/__init__.py
python/paddle/incubate/sparse/nn/functional/__init__.py
+2
-0
python/paddle/incubate/sparse/nn/functional/activation.py
python/paddle/incubate/sparse/nn/functional/activation.py
+60
-7
python/paddle/incubate/sparse/nn/layer/activation.py
python/paddle/incubate/sparse/nn/layer/activation.py
+69
-0
python/paddle/incubate/sparse/unary.py
python/paddle/incubate/sparse/unary.py
+9
-29
python/paddle/utils/code_gen/sparse_api.yaml
python/paddle/utils/code_gen/sparse_api.yaml
+8
-0
python/paddle/utils/code_gen/sparse_bw_api.yaml
python/paddle/utils/code_gen/sparse_bw_api.yaml
+7
-0
未找到文件。
paddle/phi/kernels/sparse/cpu/softmax_grad_kernel.cc
0 → 100644
浏览文件 @
2ddbc647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/softmax_grad_kernel.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/funcs/cpu_vec.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace
plt
=
paddle
::
platform
;
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
SoftmaxCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
out
,
const
SparseCsrTensor
&
dout
,
int
axis
,
SparseCsrTensor
*
dx
)
{
PADDLE_ENFORCE_EQ
(
axis
,
-
1
,
phi
::
errors
::
Unimplemented
(
"SparseCsrTensor only support axis=-1 for softmax, "
"which is faster when reading data by row (axis=-1)"
));
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
dout
,
dx
);
auto
out_dim
=
out
.
dims
();
int
rows
=
1
;
for
(
int
i
=
0
;
i
<
out_dim
.
size
()
-
1
;
++
i
)
{
rows
*=
out_dim
[
i
];
}
const
DenseTensor
&
out_crows
=
out
.
non_zero_crows
();
const
DenseTensor
&
out_values
=
out
.
non_zero_elements
();
const
DenseTensor
&
dout_values
=
dout
.
non_zero_elements
();
DenseTensor
*
dx_values
=
dx
->
mutable_non_zero_elements
();
int
row_first
=
0
;
int
row_nnz
=
0
;
const
T
*
out_data
=
out_values
.
data
<
T
>
();
const
T
*
dout_data
=
dout_values
.
data
<
T
>
();
T
*
dx_data
=
dx_values
->
data
<
T
>
();
// dx = (dout - sum(dout * out)) * out
PD_VISIT_INTEGRAL_TYPES
(
out
.
non_zero_crows
().
dtype
(),
"SoftmaxCsrGradKernel"
,
([
&
]
{
const
data_t
*
out_crows_data
=
out_crows
.
data
<
data_t
>
();
for
(
int
i
=
0
;
i
<
rows
;
++
i
)
{
row_first
=
static_cast
<
int
>
(
out_crows_data
[
i
]);
row_nnz
=
static_cast
<
int
>
(
out_crows_data
[
i
+
1
]
-
out_crows_data
[
i
]);
out_data
=
out_data
+
row_first
;
dout_data
=
dout_data
+
row_first
;
dx_data
=
dx_data
+
row_first
;
T
sum
=
0
;
phi
::
funcs
::
vec_mul_reduce
<
T
,
plt
::
avx
>
(
row_nnz
,
dout_data
,
out_data
,
&
sum
);
phi
::
funcs
::
vec_add_bias
<
T
,
plt
::
avx
>
(
row_nnz
,
static_cast
<
T
>
(
-
1
)
*
sum
,
dout_data
,
dx_data
);
phi
::
funcs
::
vec_mul
<
T
,
plt
::
avx
>
(
row_nnz
,
dx_data
,
out_data
,
dx_data
);
}
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
softmax_csr_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SoftmaxCsrGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
paddle/phi/kernels/sparse/cpu/softmax_kernel.cc
0 → 100644
浏览文件 @
2ddbc647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/softmax_kernel.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/funcs/cpu_vec.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace
plt
=
paddle
::
platform
;
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
SoftmaxCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
int
axis
,
SparseCsrTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
axis
,
-
1
,
phi
::
errors
::
Unimplemented
(
"SparseCsrTensor only support axis=-1 for softmax, "
"which is faster when reading data by row (axis=-1)"
));
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
out
);
auto
x_dim
=
x
.
dims
();
int
row_number
=
1
;
for
(
int
i
=
0
;
i
<
x_dim
.
size
()
-
1
;
++
i
)
{
row_number
*=
x_dim
[
i
];
}
const
DenseTensor
&
x_crows
=
x
.
non_zero_crows
();
const
DenseTensor
&
x_values
=
x
.
non_zero_elements
();
DenseTensor
*
out_values
=
out
->
mutable_non_zero_elements
();
int
row_first
=
0
;
int
row_nnz
=
0
;
T
row_max_val
=
0
;
const
T
*
x_data
=
x_values
.
data
<
T
>
();
T
*
out_data
=
out_values
->
data
<
T
>
();
// out = exp(x-x_max) / sum( exp(x-x_max ))
PD_VISIT_INTEGRAL_TYPES
(
x
.
non_zero_crows
().
dtype
(),
"CsrSoftmaxKernel"
,
([
&
]
{
const
data_t
*
x_crows_data
=
x_crows
.
data
<
data_t
>
();
for
(
int
i
=
0
;
i
<
row_number
;
++
i
)
{
row_first
=
static_cast
<
int
>
(
x_crows_data
[
i
]);
row_nnz
=
static_cast
<
int
>
(
x_crows_data
[
i
+
1
]
-
x_crows_data
[
i
]);
x_data
=
x_data
+
row_first
;
out_data
=
out_data
+
row_first
;
row_max_val
=
*
std
::
max_element
(
x_data
,
x_data
+
row_nnz
);
phi
::
funcs
::
vec_add_bias
<
T
,
plt
::
avx
>
(
row_nnz
,
static_cast
<
T
>
(
-
1
)
*
row_max_val
,
x_data
,
out_data
);
phi
::
funcs
::
vec_exp
<
T
>
(
row_nnz
,
out_data
,
out_data
);
T
sum
=
0
;
phi
::
funcs
::
vec_sum
<
T
,
plt
::
avx
>
(
row_nnz
,
out_data
,
&
sum
);
phi
::
funcs
::
vec_scal
<
T
,
plt
::
avx
>
(
row_nnz
,
static_cast
<
T
>
(
1
)
/
sum
,
out_data
,
out_data
);
}
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
softmax_csr
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SoftmaxCsrKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
paddle/phi/kernels/sparse/empty_kernel.cc
0 → 100644
浏览文件 @
2ddbc647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
EmptyLikeCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
SparseCsrTensor
*
out
)
{
const
DenseTensor
&
x_crows
=
x
.
non_zero_crows
();
const
DenseTensor
&
x_cols
=
x
.
non_zero_cols
();
const
DenseTensor
&
x_values
=
x
.
non_zero_elements
();
DenseTensor
*
out_crows
=
out
->
mutable_non_zero_crows
();
DenseTensor
*
out_cols
=
out
->
mutable_non_zero_cols
();
DenseTensor
*
out_values
=
out
->
mutable_non_zero_elements
();
out
->
set_dims
(
x
.
dims
());
phi
::
Copy
(
dev_ctx
,
x_crows
,
dev_ctx
.
GetPlace
(),
false
,
out_crows
);
phi
::
Copy
(
dev_ctx
,
x_cols
,
dev_ctx
.
GetPlace
(),
false
,
out_cols
);
out_values
->
Resize
(
x_values
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
out_values
);
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
empty_like_csr
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
EmptyLikeCsrKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
empty_like_csr
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
EmptyLikeCsrKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
#endif
paddle/phi/kernels/sparse/empty_kernel.h
0 → 100644
浏览文件 @
2ddbc647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
EmptyLikeCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
SparseCsrTensor
*
out
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/gpu/softmax_grad_kernel.cu
0 → 100644
浏览文件 @
2ddbc647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/softmax_grad_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
=
int
>
__global__
void
SoftmaxGradGpuKernel
(
const
IntT
*
out_crows
,
const
T
*
out_values
,
const
T
*
dout_values
,
T
*
dx_values
,
int
row_number
)
{
// dx = (dout - sum(dout * out)) * out
int
row
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
int
non_zero_idx
=
threadIdx
.
x
;
if
(
row
>=
row_number
)
return
;
int
row_first
=
static_cast
<
int
>
(
out_crows
[
row
]);
int
row_nnz
=
static_cast
<
int
>
(
out_crows
[
row
+
1
]
-
out_crows
[
row
]);
if
(
row_nnz
==
0
)
return
;
int
kIteration
=
(
row_nnz
+
warpSize
-
1
)
/
warpSize
;
T
mul_result
=
0
;
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
non_zero_idx
+
i
*
warpSize
;
if
(
idx
>=
row_nnz
)
break
;
mul_result
+=
out_values
[
row_first
+
idx
]
*
dout_values
[
row_first
+
idx
];
}
T
sum
=
phi
::
funcs
::
warpReduceSum
<
T
>
(
mul_result
,
0xFFFFFFFF
);
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
non_zero_idx
+
i
*
warpSize
;
if
(
idx
>=
row_nnz
)
break
;
dx_values
[
row_first
+
idx
]
=
(
dout_values
[
row_first
+
idx
]
-
sum
)
*
out_values
[
row_first
+
idx
];
}
}
template
<
typename
T
,
typename
Context
>
void
SoftmaxCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
out
,
const
SparseCsrTensor
&
dout
,
int
axis
,
SparseCsrTensor
*
dx
)
{
PADDLE_ENFORCE_EQ
(
axis
,
-
1
,
phi
::
errors
::
Unimplemented
(
"SparseCsrTensor only support axis=-1 for softmax, "
"which is faster when reading data by row (axis=-1)"
));
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
dout
,
dx
);
auto
out_dim
=
out
.
dims
();
int
row_number
=
1
;
for
(
int
i
=
0
;
i
<
out_dim
.
size
()
-
1
;
++
i
)
{
row_number
*=
out_dim
[
i
];
}
dim3
grid
((
row_number
+
3
)
/
4
);
dim3
block
(
32
,
4
);
PD_VISIT_INTEGRAL_TYPES
(
out
.
non_zero_crows
().
dtype
(),
"SoftmaxCsrGradKernel"
,
([
&
]
{
SoftmaxGradGpuKernel
<
T
,
data_t
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
out
.
non_zero_crows
().
data
<
data_t
>
(),
out
.
non_zero_elements
().
data
<
T
>
(),
dout
.
non_zero_elements
().
data
<
T
>
(),
dx
->
mutable_non_zero_elements
()
->
data
<
T
>
(),
row_number
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
softmax_csr_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SoftmaxCsrGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
paddle/phi/kernels/sparse/gpu/softmax_kernel.cu
0 → 100644
浏览文件 @
2ddbc647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/activation_functor.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/softmax_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
IntT
=
int
>
__global__
void
SoftmaxGpuKernel
(
const
IntT
*
x_crows
,
const
T
*
x_values
,
T
*
out_values
,
int
row_number
)
{
// out = exp(x-x_max) / sum(exp(x-x_max))
int
row
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
int
non_zero_idx
=
threadIdx
.
x
;
if
(
row
>=
row_number
)
return
;
int
row_first
=
static_cast
<
int
>
(
x_crows
[
row
]);
int
row_nnz
=
static_cast
<
int
>
(
x_crows
[
row
+
1
]
-
x_crows
[
row
]);
if
(
row_nnz
==
0
)
return
;
int
kIteration
=
(
row_nnz
+
warpSize
-
1
)
/
warpSize
;
T
max_val
=
-
std
::
numeric_limits
<
T
>::
infinity
();
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
non_zero_idx
+
i
*
warpSize
;
if
(
idx
>=
row_nnz
)
break
;
if
(
max_val
<
x_values
[
row_first
+
idx
])
{
max_val
=
x_values
[
row_first
+
idx
];
}
}
T
row_max_val
=
phi
::
funcs
::
warpReduceMax
<
T
>
(
max_val
,
0xFFFFFFFF
);
T
exp_sum
=
0
;
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
non_zero_idx
+
i
*
warpSize
;
if
(
idx
>=
row_nnz
)
break
;
auto
functor
=
phi
::
funcs
::
CudaExpFunctor
<
T
>
();
T
exp
=
functor
(
x_values
[
row_first
+
idx
]
-
row_max_val
);
exp_sum
+=
exp
;
out_values
[
row_first
+
idx
]
=
exp
;
}
T
row_exp_sum
=
phi
::
funcs
::
warpReduceSum
<
T
>
(
exp_sum
,
0xFFFFFFFF
);
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
non_zero_idx
+
i
*
warpSize
;
if
(
idx
>=
row_nnz
)
break
;
out_values
[
row_first
+
idx
]
=
out_values
[
row_first
+
idx
]
/
row_exp_sum
;
}
}
template
<
typename
T
,
typename
Context
>
void
SoftmaxCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
int
axis
,
SparseCsrTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
axis
,
-
1
,
phi
::
errors
::
Unimplemented
(
"SparseCsrTensor only support axis=-1 for softmax, "
"which is faster when reading data by row (axis=-1)"
));
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
out
);
auto
x_dim
=
x
.
dims
();
int
row_number
=
1
;
for
(
int
i
=
0
;
i
<
x_dim
.
size
()
-
1
;
++
i
)
{
row_number
*=
x_dim
[
i
];
}
dim3
grid
((
row_number
+
3
)
/
4
);
dim3
block
(
32
,
4
);
DenseTensor
tmp_tensor
=
phi
::
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
x
.
non_zero_elements
());
PD_VISIT_INTEGRAL_TYPES
(
x
.
non_zero_crows
().
dtype
(),
"CsrSoftmaxKernel"
,
([
&
]
{
SoftmaxGpuKernel
<
T
,
data_t
>
<<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
x
.
non_zero_crows
().
data
<
data_t
>
(),
x
.
non_zero_elements
().
data
<
T
>
(),
out
->
mutable_non_zero_elements
()
->
data
<
T
>
(),
row_number
);
}));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
softmax_csr
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SoftmaxCsrKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
paddle/phi/kernels/sparse/softmax_grad_kernel.h
0 → 100644
浏览文件 @
2ddbc647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
SoftmaxCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
out
,
const
SparseCsrTensor
&
dout
,
int
axis
,
SparseCsrTensor
*
dx
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/softmax_kernel.h
0 → 100644
浏览文件 @
2ddbc647
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
SoftmaxCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
X
,
int
axis
,
SparseCsrTensor
*
out
);
}
// namespace sparse
}
// namespace phi
python/paddle/fluid/tests/unittests/test_sparse_softmax.py
0 → 100644
浏览文件 @
2ddbc647
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle.fluid.framework
import
_test_eager_guard
import
numpy
as
np
import
scipy
import
scipy.sparse
as
sp
import
unittest
import
os
import
re
import
math
np
.
random
.
seed
(
2022
)
class
TestCsrSoftmax
(
unittest
.
TestCase
):
def
test_softmax
(
self
):
with
_test_eager_guard
():
mask
=
np
.
random
.
rand
(
1
,
5
)
<
0.5
np_x
=
np
.
random
.
rand
(
1
,
5
)
*
mask
np_csr
=
sp
.
csr_matrix
(
np_x
)
row_number
=
np_csr
.
shape
[
0
]
np_out
=
np
.
array
([])
for
i
in
range
(
row_number
):
start
=
np_csr
.
indptr
[
i
]
end
=
np_csr
.
indptr
[
i
+
1
]
if
start
==
end
:
continue
x
=
np_csr
.
data
[
start
:
end
]
x_max
=
np
.
max
(
x
,
keepdims
=
True
)
x_exp
=
np
.
exp
(
x
-
x_max
)
x_exp_sum
=
np
.
sum
(
x_exp
,
keepdims
=
True
)
np_out
=
np
.
concatenate
([
np_out
,
x_exp
/
x_exp_sum
])
csr
=
paddle
.
to_tensor
(
np_x
,
stop_gradient
=
False
).
to_sparse_csr
()
m
=
paddle
.
incubate
.
sparse
.
nn
.
Softmax
()
out
=
m
(
csr
)
self
.
assertTrue
(
np
.
allclose
(
out
.
crows
().
numpy
(),
np_csr
.
indptr
))
self
.
assertTrue
(
np
.
allclose
(
out
.
cols
().
numpy
(),
np_csr
.
indices
))
self
.
assertTrue
(
np
.
allclose
(
out
.
values
().
numpy
(),
np_out
))
# dx = (dout - sum(dout * out)) * out, dout=rand_x
out
.
backward
(
csr
.
detach
())
for
i
in
range
(
row_number
):
start
=
np_csr
.
indptr
[
i
]
end
=
np_csr
.
indptr
[
i
+
1
]
if
start
==
end
:
continue
out
=
np_out
[
start
:
end
]
dout
=
np_csr
.
data
[
start
:
end
]
sum
=
np
.
sum
(
dout
*
out
,
keepdims
=
True
)
dx
=
(
dout
-
sum
)
*
out
self
.
assertTrue
(
np
.
allclose
(
csr
.
grad
.
crows
().
numpy
(),
np_csr
.
indptr
))
self
.
assertTrue
(
np
.
allclose
(
csr
.
grad
.
cols
().
numpy
(),
np_csr
.
indices
))
self
.
assertTrue
(
np
.
allclose
(
csr
.
grad
.
values
().
numpy
(),
dx
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_sparse_unary_op.py
浏览文件 @
2ddbc647
...
...
@@ -27,7 +27,7 @@ class TestSparseUnary(unittest.TestCase):
def
assert_raises_on_dense_tensor
(
self
,
sparse_func
):
with
_test_eager_guard
():
dense_x
=
paddle
.
ones
((
2
,
3
))
with
self
.
assertRaises
(
Value
Error
):
with
self
.
assertRaises
(
NotImplemented
Error
):
sparse_func
(
dense_x
)
def
compare_with_dense
(
...
...
python/paddle/incubate/sparse/binary.py
浏览文件 @
2ddbc647
...
...
@@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.common_ops_import
import
dygraph_only
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
dygraph_only
__all__
=
[]
...
...
python/paddle/incubate/sparse/nn/__init__.py
浏览文件 @
2ddbc647
...
...
@@ -15,6 +15,7 @@
from
.
import
functional
from
.layer.activation
import
ReLU
from
.layer.activation
import
Softmax
from
.layer.norm
import
BatchNorm
from
.layer.conv
import
Conv3D
from
.layer.conv
import
SubmConv3D
...
...
@@ -22,6 +23,7 @@ from .layer.pooling import MaxPool3D
__all__
=
[
'ReLU'
,
'Softmax'
,
'BatchNorm'
,
'Conv3D'
,
'SubmConv3D'
,
...
...
python/paddle/incubate/sparse/nn/functional/__init__.py
浏览文件 @
2ddbc647
...
...
@@ -16,10 +16,12 @@ from .conv import conv3d # noqa: F401
from
.conv
import
subm_conv3d
# noqa: F401
from
.pooling
import
max_pool3d
# noqa: F401
from
.activation
import
relu
# noqa: F401
from
.activation
import
softmax
# noqa: F401
__all__
=
[
'conv3d'
,
'subm_conv3d'
,
'max_pool3d'
,
'relu'
,
'softmax'
,
]
python/paddle/incubate/sparse/nn/functional/activation.py
浏览文件 @
2ddbc647
...
...
@@ -15,8 +15,10 @@
__all__
=
[]
from
paddle
import
_C_ops
,
in_dynamic_mode
from
paddle.fluid.framework
import
dygraph_only
@
dygraph_only
def
relu
(
x
,
name
=
None
):
"""
sparse relu activation, requiring x to be a sparse coo or sparse csr tensor.
...
...
@@ -44,12 +46,63 @@ def relu(x, name=None):
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.nn.functional.relu(sparse_x)
"""
return
_C_ops
.
final_state_sparse_relu
(
x
)
assert
in_dynamic_mode
(),
"Currently, Sparse API only support dynamic mode"
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_relu
(
x
)
else
:
raise
ValueError
(
"Currently, sparse.relu only support the input of SparseCooTensor or SparseCsrTensor"
)
@
dygraph_only
def
softmax
(
x
,
axis
=-
1
,
name
=
None
):
"""
sparse softmax activation, x must be SparseCsrTensor or SparseCooTensor.
Note:
Only supported axis=-1 for SparseCsrTensor, which is faster when read data
by row (axis=-1).
From the point of view of dense matrix, for each row :math:`i` and each column :math:`j`
in the matrix, we have:
.. math::
softmax_ij =
\f
rac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}
Parameters:
x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: SparseCoo or SparseCsr, whose layout is the same with `x` .
Examples:
.. code-block:: python
import paddle
import numpy as np
from paddle.fluid.framework import _test_eager_guard
paddle.seed(100)
with _test_eager_guard():
mask = np.random.rand(3, 4) < 0.5
np_x = np.random.rand(3, 4) * mask
# [[0. 0. 0.96823406 0.19722934]
# [0.94373937 0. 0.02060066 0.71456372]
# [0. 0. 0. 0.98275049]]
csr = paddle.to_tensor(np_x).to_sparse_csr()
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
# values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
# 0.98275049])
out = paddle.incubate.sparse.nn.functional.softmax(csr)
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
# values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
# 1. ])
"""
return
_C_ops
.
final_state_sparse_softmax
(
x
,
axis
)
python/paddle/incubate/sparse/nn/layer/activation.py
浏览文件 @
2ddbc647
...
...
@@ -59,3 +59,72 @@ class ReLU(Layer):
def
extra_repr
(
self
):
name_str
=
'name={}'
.
format
(
self
.
_name
)
if
self
.
_name
else
''
return
name_str
class
Softmax
(
Layer
):
"""
sparse softmax activation, x must be SparseCsrTensor or SparseCooTensor.
Note:
Only supported axis=-1 for SparseCsrTensor, which is faster when read data
by row (axis=-1).
From the point of view of dense matrix, for each row :math:`i` and each column :math:`j`
in the matrix, we have:
.. math::
softmax_ij =
\f
rac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}
Parameters:
axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: SparseCooTensor / SparseCsrTensor with any shape.
- output: Sparse Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
from paddle.fluid.framework import _test_eager_guard
paddle.seed(100)
with _test_eager_guard():
mask = np.random.rand(3, 4) < 0.5
np_x = np.random.rand(3, 4) * mask
# [[0. 0. 0.96823406 0.19722934]
# [0.94373937 0. 0.02060066 0.71456372]
# [0. 0. 0. 0.98275049]]
csr = paddle.to_tensor(np_x).to_sparse_csr()
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
# values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
# 0.98275049])
m = paddle.incubate.sparse.nn.Softmax()
out = m(csr)
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
# values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
# 1. ])
"""
def
__init__
(
self
,
axis
=-
1
,
name
=
None
):
super
(
Softmax
,
self
).
__init__
()
self
.
_axis
=
axis
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
softmax
(
x
,
self
.
_axis
,
self
.
_name
)
def
extra_repr
(
self
):
name_str
=
'name={}'
.
format
(
self
.
_name
)
if
self
.
_name
else
''
return
name_str
python/paddle/incubate/sparse/unary.py
浏览文件 @
2ddbc647
...
...
@@ -12,11 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[]
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
dygraph_only
from
paddle
import
_C_ops
,
in_dynamic_mode
__all__
=
[]
@
dygraph_only
def
tanh
(
x
,
name
=
None
):
"""
sparse tanh activation, requiring x to be a sparse coo or sparse csr tensor.
...
...
@@ -44,17 +46,10 @@ def tanh(x, name=None):
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.tanh(sparse_x)
"""
assert
in_dynamic_mode
(),
"Currently, Sparse API only support dynamic mode"
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_tanh
(
x
)
else
:
raise
ValueError
(
"Currently, sparse.tanh only support the input of SparseCooTensor or SparseCsrTensor"
)
return
_C_ops
.
final_state_sparse_tanh
(
x
)
@
dygraph_only
def
sqrt
(
x
,
name
=
None
):
"""
Calculate square root of x, requiring x to be a sparse coo or sparse csr tensor.
...
...
@@ -82,17 +77,10 @@ def sqrt(x, name=None):
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.sqrt(sparse_x)
"""
assert
in_dynamic_mode
(),
"Currently, Sparse API only support dynamic mode"
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_sqrt
(
x
)
else
:
raise
ValueError
(
"Currently, sparse.sqrt only support the input of SparseCooTensor or SparseCsrTensor"
)
return
_C_ops
.
final_state_sparse_sqrt
(
x
)
@
dygraph_only
def
sin
(
x
,
name
=
None
):
"""
Calculate sin of x, requiring x to be a sparse coo or sparse csr tensor.
...
...
@@ -120,12 +108,4 @@ def sin(x, name=None):
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.sin(sparse_x)
"""
assert
in_dynamic_mode
(),
"Currently, Sparse API only support dynamic mode"
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_sin
(
x
)
else
:
raise
ValueError
(
"Currently, sparse.sin only support the input of SparseCooTensor or SparseCsrTensor"
)
return
_C_ops
.
final_state_sparse_sin
(
x
)
python/paddle/utils/code_gen/sparse_api.yaml
浏览文件 @
2ddbc647
...
...
@@ -46,6 +46,14 @@
layout
:
x
backward
:
sin_grad
-
api
:
softmax
args
:
(Tensor x, int axis=-1)
output
:
Tensor(out)
kernel
:
func
:
softmax_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
softmax_grad
-
api
:
sqrt
args
:
(Tensor x)
output
:
Tensor(out)
...
...
python/paddle/utils/code_gen/sparse_bw_api.yaml
浏览文件 @
2ddbc647
...
...
@@ -53,6 +53,13 @@
kernel
:
func
:
sparse_coo_sin_grad {sparse_coo, sparse_coo -> sparse_coo}
-
backward_api
:
softmax_grad
forward
:
softmax(Tensor x, int axis=-1) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad, int axis)
output
:
Tensor(x_grad)
kernel
:
func
:
softmax_csr_grad{sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
sparse_maxpool_grad
forward
:
sparse_maxpool(Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides) -> Tensor(out), Tensor(rulebook)
args
:
(Tensor x, Tensor rulebook, Tensor out, Tensor out_grad, int[] kernel_sizes)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录