提交 2dccdc3c 编写于 作者: T tensor-tang

update benchmark data on VGG19

上级 8f4476b8
# Benchmark
Machine:
- Server
- Intel(R) Xeon(R) Gold 6148M CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
- Laptop
- DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD
- i5 MacBook Pro (Retina, 13-inch, Early 2015)
- Desktop
- i7-6700k
System: CentOS 7.3.1611
PaddlePaddle: commit cfa86a3f70cb5f2517a802f32f2c88d48ab4e0e0
- MKL-DNN tag v0.10
- MKLML 2018.0.20170720
- OpenBLAS v0.2.20
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.
## Benchmark Model
### Server
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148M CPU @ 2.40GHz
Input image size - 3 * 224 * 224, Time: images/second
- VGG-19
| BatchSize | 64 | 128 | 256 |
|--------------|-------| -----| --------|
| OpenBLAS | 7.86 | 9.02 | 10.62 |
| MKLML | 11.80 | 13.43 | 16.21 |
| MKL-DNN | 29.07 | 30.40 | 31.06 |
chart on batch size 128
TBD
- ResNet
- GoogLeNet
### Laptop
TBD
### Desktop
TBD
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册