Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
2d2f11d1
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2d2f11d1
编写于
2月 17, 2022
作者:
J
joeqiao12
提交者:
GitHub
2月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add reshape2 op for mlu (#39562)
上级
2129b300
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
218 addition
and
0 deletion
+218
-0
paddle/fluid/operators/reshape_op_mlu.cc
paddle/fluid/operators/reshape_op_mlu.cc
+145
-0
python/paddle/fluid/tests/unittests/mlu/test_reshape2_op_mlu.py
.../paddle/fluid/tests/unittests/mlu/test_reshape2_op_mlu.py
+73
-0
未找到文件。
paddle/fluid/operators/reshape_op_mlu.cc
0 → 100644
浏览文件 @
2d2f11d1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/utils.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
Reshape2MLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
std
::
vector
<
int32_t
>
target_shape_vector
;
auto
shape_tensor_vector
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"ShapeTensor"
);
if
(
shape_tensor_vector
.
size
()
>
0
)
{
for
(
auto
*
shape_tensor
:
shape_tensor_vector
)
{
PADDLE_ENFORCE_EQ
(
shape_tensor
->
dims
().
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"If the element type of 'shape' in Reshape Op is Tensor, "
"the element's shape must be [1]. But received the element's "
"shape is [%d]"
,
shape_tensor
->
dims
().
size
()));
target_shape_vector
.
push_back
(
GetDataFromTensor
<
int
>
(
shape_tensor
)[
0
]);
}
}
else
{
auto
*
shape_tensor
=
ctx
.
HasInput
(
"Shape"
)
?
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Shape"
)
:
nullptr
;
if
(
shape_tensor
)
{
target_shape_vector
=
GetDataFromTensor
<
int
>
(
shape_tensor
);
}
else
{
target_shape_vector
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
PADDLE_ENFORCE_GT
(
target_shape_vector
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"The length of shape attribute should be larger than 0 when "
"input ShapeTensor and Shape are empty!"
));
}
}
int
num_negative
=
std
::
count
(
target_shape_vector
.
begin
(),
target_shape_vector
.
end
(),
-
1
);
PADDLE_ENFORCE_LE
(
num_negative
,
1
,
platform
::
errors
::
InvalidArgument
(
"The max number of -1 in shape attribute or shape tensor is 1 "
"but received %d."
,
num_negative
));
auto
it_zero
=
std
::
find
(
target_shape_vector
.
begin
(),
target_shape_vector
.
end
(),
0
);
if
(
it_zero
!=
target_shape_vector
.
end
())
{
int
x_rank
=
x
->
dims
().
size
();
for
(
size_t
i
=
0
;
i
<
target_shape_vector
.
size
();
i
++
)
{
if
(
target_shape_vector
[
i
]
==
0
)
{
PADDLE_ENFORCE_LT
(
i
,
x_rank
,
platform
::
errors
::
InvalidArgument
(
"The index of 0 in shape attribute or shape tensor"
,
"should be less than input dim size, "
,
"but the index is %d and input dim size is %d"
,
i
,
x_rank
));
target_shape_vector
[
i
]
=
x
->
dims
().
at
(
i
);
}
}
}
auto
it
=
std
::
find
(
target_shape_vector
.
begin
(),
target_shape_vector
.
end
(),
-
1
);
if
(
it
!=
target_shape_vector
.
end
())
{
auto
ddim_out_vec
=
framework
::
vectorize
(
x
->
dims
());
int
ddim_out_product
=
std
::
accumulate
(
ddim_out_vec
.
begin
(),
ddim_out_vec
.
end
(),
1
,
std
::
multiplies
<
int
>
());
int
reshape_out_product
=
std
::
accumulate
(
target_shape_vector
.
begin
(),
target_shape_vector
.
end
(),
-
1
,
std
::
multiplies
<
int
>
());
int
index
=
std
::
distance
(
target_shape_vector
.
begin
(),
it
);
target_shape_vector
[
index
]
=
ddim_out_product
/
reshape_out_product
;
}
auto
out_dims
=
framework
::
make_ddim
(
target_shape_vector
);
out
->
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
// output should copy to mlu
framework
::
TensorCopy
(
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
out
);
out
->
Resize
(
out_dims
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
Reshape2GradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
d_x
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
in_dims
=
d_x
->
dims
();
d_x
->
mutable_data
(
ctx
.
GetPlace
(),
d_out
->
type
());
framework
::
TensorCopy
(
*
d_out
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
d_x
);
d_x
->
Resize
(
in_dims
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
reshape2
,
ops
::
Reshape2MLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
float
>
,
ops
::
Reshape2MLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
int
>
,
ops
::
Reshape2MLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
int64_t
>
,
ops
::
Reshape2MLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
bool
>
,
ops
::
Reshape2MLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
double
>
,
ops
::
Reshape2MLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
uint8_t
>
,
ops
::
Reshape2MLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
reshape2_grad
,
ops
::
Reshape2GradMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
float
>
,
ops
::
Reshape2GradMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
int
>
,
ops
::
Reshape2GradMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
int64_t
>
,
ops
::
Reshape2GradMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
bool
>
,
ops
::
Reshape2GradMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
double
>
,
ops
::
Reshape2GradMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
uint8_t
>
,
ops
::
Reshape2GradMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_reshape2_op_mlu.py
0 → 100644
浏览文件 @
2d2f11d1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2022
class
TestReshape2
(
OpTest
):
def
setUp
(
self
):
self
.
set_mlu
()
self
.
op_type
=
"reshape2"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
init_data
()
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"shape"
:
self
.
new_shape
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
infered_shape
),
'XShape'
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
100
)
self
.
new_shape
=
(
20
,
10
)
self
.
infered_shape
=
(
20
,
10
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
no_check_set
=
[
'XShape'
])
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestReshape2_case2
(
TestReshape2
):
def
init_data
(
self
):
self
.
ori_shape
=
(
2
,
100
)
self
.
new_shape
=
(
-
1
,
10
)
self
.
infered_shape
=
(
20
,
10
)
class
TestReshape2_case3
(
TestReshape2
):
def
init_data
(
self
):
self
.
ori_shape
=
(
100
,
5
,
6
)
self
.
new_shape
=
(
-
1
,
0
,
3
)
self
.
infered_shape
=
(
200
,
5
,
3
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录