未验证 提交 2c71de24 编写于 作者: Z Zhen Wang 提交者: GitHub

Fix docs of load_inference_model&load_params&load_persistables&chain. (#20274)

* improve the docs of load_inference_model&load_params&load_persistables&chain.
上级 2c28e328
...@@ -74,10 +74,10 @@ paddle.fluid.io.save_vars (ArgSpec(args=['executor', 'dirname', 'main_program', ...@@ -74,10 +74,10 @@ paddle.fluid.io.save_vars (ArgSpec(args=['executor', 'dirname', 'main_program',
paddle.fluid.io.save_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '046d7c43d67e08c2660bb3bd7e081015')) paddle.fluid.io.save_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '046d7c43d67e08c2660bb3bd7e081015'))
paddle.fluid.io.save_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'ffcee38044975c29f2ab2fec0576f963')) paddle.fluid.io.save_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'ffcee38044975c29f2ab2fec0576f963'))
paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '1bb9454cf09d71f190bb51550c5a3ac9')) paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '1bb9454cf09d71f190bb51550c5a3ac9'))
paddle.fluid.io.load_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '116a9ed169e7ff0226faccff3c29364c')) paddle.fluid.io.load_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'f3f16db75ae076d46608c7e976650cfc'))
paddle.fluid.io.load_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'cfa84ef7c5435625bff4cc132cb8a0e3')) paddle.fluid.io.load_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '1e039084ad3781eb43966581eed48688'))
paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment', 'program_only'], varargs=None, keywords=None, defaults=(None, None, None, True, False)), ('document', 'fc82bfd137a9b1ab8ebd1651bd35b6e5')) paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment', 'program_only'], varargs=None, keywords=None, defaults=(None, None, None, True, False)), ('document', 'fc82bfd137a9b1ab8ebd1651bd35b6e5'))
paddle.fluid.io.load_inference_model (ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename', 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '2f54d7c206b62f8c10f4f9d78c731cfd')) paddle.fluid.io.load_inference_model (ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename', 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '7a863032bf7613dec1c8dd99efbd82e5'))
paddle.fluid.io.batch (ArgSpec(args=['reader', 'batch_size', 'drop_last'], varargs=None, keywords=None, defaults=(False,)), ('document', 'cf2869b408b39cadadd95206b4e03b39')) paddle.fluid.io.batch (ArgSpec(args=['reader', 'batch_size', 'drop_last'], varargs=None, keywords=None, defaults=(False,)), ('document', 'cf2869b408b39cadadd95206b4e03b39'))
paddle.fluid.io.PyReader ('paddle.fluid.reader.PyReader', ('document', 'b03399246f69cd6fc03b43e87af8bd4e')) paddle.fluid.io.PyReader ('paddle.fluid.reader.PyReader', ('document', 'b03399246f69cd6fc03b43e87af8bd4e'))
paddle.fluid.io.PyReader.__init__ (ArgSpec(args=['self', 'feed_list', 'capacity', 'use_double_buffer', 'iterable', 'return_list'], varargs=None, keywords=None, defaults=(None, None, True, True, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.io.PyReader.__init__ (ArgSpec(args=['self', 'feed_list', 'capacity', 'use_double_buffer', 'iterable', 'return_list'], varargs=None, keywords=None, defaults=(None, None, True, True, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...@@ -95,7 +95,7 @@ paddle.fluid.io.cache (ArgSpec(args=['reader'], varargs=None, keywords=None, def ...@@ -95,7 +95,7 @@ paddle.fluid.io.cache (ArgSpec(args=['reader'], varargs=None, keywords=None, def
paddle.fluid.io.map_readers (ArgSpec(args=['func'], varargs='readers', keywords=None, defaults=None), ('document', '77cbadb09df588e21e5cc0819b69c87d')) paddle.fluid.io.map_readers (ArgSpec(args=['func'], varargs='readers', keywords=None, defaults=None), ('document', '77cbadb09df588e21e5cc0819b69c87d'))
paddle.fluid.io.buffered (ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None), ('document', '0d6186f109feceb99f60ec50a0a624cb')) paddle.fluid.io.buffered (ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None), ('document', '0d6186f109feceb99f60ec50a0a624cb'))
paddle.fluid.io.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None), ('document', '884291104e1c3f37f33aae44b7deeb0d')) paddle.fluid.io.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None), ('document', '884291104e1c3f37f33aae44b7deeb0d'))
paddle.fluid.io.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'd22c34e379a53901ae67a6bca7f4def4')) paddle.fluid.io.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'e0311508658a7e741fc39feea8be0ad2'))
paddle.fluid.io.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', 'e42ea6fee23ce26b23cb142cd1d6522d')) paddle.fluid.io.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', 'e42ea6fee23ce26b23cb142cd1d6522d'))
paddle.fluid.io.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'c5bb8f7dd4f917f1569a368aab5b8aad')) paddle.fluid.io.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'c5bb8f7dd4f917f1569a368aab5b8aad'))
paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '9c804a42f8a4dbaa76b3c98e0ab7f796')) paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '9c804a42f8a4dbaa76b3c98e0ab7f796'))
......
...@@ -706,33 +706,38 @@ def load_vars(executor, ...@@ -706,33 +706,38 @@ def load_vars(executor,
def load_params(executor, dirname, main_program=None, filename=None): def load_params(executor, dirname, main_program=None, filename=None):
""" """
This function filters out all parameters from the give `main_program` This API filters out all parameters from the give ``main_program``
and then trys to load these parameters from the folder `dirname` or and then tries to load these parameters from the directory ``dirname`` or
the file `filename`. the file ``filename``.
Use the `dirname` to specify the folder where parameters were saved. If Use the ``dirname`` to specify the directory where parameters were saved. If
parameters were saved in separate files in the folder `dirname`, set parameters were saved in separate files under the directory `dirname`, set
`filename` None; if all parameters were saved in a single file, use ``filename`` as None; if all parameters were saved in a single file, use
`filename` to specify the file name. ``filename`` to specify the file name.
NOTICE: Some variables are not Parameter while they are necessary for **Note**:
training. So you can NOT save and continue your training just by Some variables are not Parameter while they are necessary for
`save_params()` and `load_params()`. Please use `save_persistables()` training, such as learning rate, global step, etc. So you cannot save and
and `load_persistables()` instead. continue your training just by using :ref:`api_fluid_io_save_params` and
If you want to load the pre-trained model structure and parameters :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
for the inference, please use the `load_inference_model` API. You can and :ref:`api_fluid_io_load_persistables` instead.
refer to :ref:`api_guide_model_save_reader_en` for more details.
If you want to load the pre-trained model structure and parameters
for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
refer to :ref:`api_guide_model_save_reader_en` for more details.
Args: Args:
executor(Executor): The executor to run for loading parameters. executor(Executor): The executor used for loading parameters.
See :ref:`api_guide_executor_en` for more details about it.
dirname(str): The directory path. dirname(str): The directory path.
main_program(Program|None): The program whose parameters will be main_program(Program, optional): The program whose parameters will be
loaded. If it is None, the default loaded. If it is None, the ``default_main_program``
main program will be used automatically. will be used automatically. See :ref:`api_guide_Program_en`
Default: None for more about ``Program``.
filename(str|None): The file which saved all parameters. If parameters Default: None.
were saved in differnet files, set it to None. filename(str, optional): The file which saved all parameters. If parameters
Default: None were saved in separated files, set it to None.
Default: None.
Returns: Returns:
None None
...@@ -741,6 +746,7 @@ def load_params(executor, dirname, main_program=None, filename=None): ...@@ -741,6 +746,7 @@ def load_params(executor, dirname, main_program=None, filename=None):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model" param_path = "./my_paddle_model"
prog = fluid.default_main_program() prog = fluid.default_main_program()
...@@ -757,25 +763,27 @@ def load_params(executor, dirname, main_program=None, filename=None): ...@@ -757,25 +763,27 @@ def load_params(executor, dirname, main_program=None, filename=None):
def load_persistables(executor, dirname, main_program=None, filename=None): def load_persistables(executor, dirname, main_program=None, filename=None):
""" """
This function filters out all variables with `persistable==True` from the This API filters out all variables with ``persistable==True`` from the
give `main_program` and then trys to load these variables from the folder given ``main_program`` and then tries to load these variables from the
`dirname` or the file `filename`. directory ``dirnameme`` or the file ``filename``.
Use the `dirname` to specify the folder where persistable variables were Use the ``dirname`` to specify the directory where persistable variables
saved. If variables were saved in separate files, set `filename` None; (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
if all variables were saved in a single file, use `filename` to specify were saved in separate files, set ``filename`` as None; if all variables
the file name. were saved in a single file, use ``filename`` to specify the file name.
Args: Args:
executor(Executor): The executor to run for loading persistable variables. executor(Executor): The executor used for loading persistable variables.
See :ref:`api_guide_executor_en` for more details about it.
dirname(str): The directory path. dirname(str): The directory path.
main_program(Program|None): The program whose persistbale variables will main_program(Program, optional): The program whose persistbale variables will
be loaded. If it is None, the default main be loaded. If it is None, the ``default_main_program``
program will be used automatically. will be used automatically. See :ref:`api_guide_Program_en`
Default: None for more about ``Program``.
filename(str|None): The file which saved all variables. If variables were Default: None.
saved in differnet files, set it to None. filename(str, optional): The file which saved all persistable variables. If variables
Default: None were saved in separated files, set it to None.
Default: None.
Returns: Returns:
None None
...@@ -784,6 +792,7 @@ def load_persistables(executor, dirname, main_program=None, filename=None): ...@@ -784,6 +792,7 @@ def load_persistables(executor, dirname, main_program=None, filename=None):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model" param_path = "./my_paddle_model"
prog = fluid.default_main_program() prog = fluid.default_main_program()
...@@ -1160,36 +1169,39 @@ def load_inference_model(dirname, ...@@ -1160,36 +1169,39 @@ def load_inference_model(dirname,
params_filename=None, params_filename=None,
pserver_endpoints=None): pserver_endpoints=None):
""" """
Load inference model from a directory. By this API, you can get the model Load the inference model from a given directory. By this API, you can get the model
structure(inference program) and model parameters. If you just want to load structure(Inference Program) and model parameters. If you just want to load
parameters of the pre-trained model, please use the `load_params` API. parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
You can refer to :ref:`api_guide_model_save_reader_en` for more details. You can refer to :ref:`api_guide_model_save_reader_en` for more details.
Args: Args:
dirname(str): The directory path dirname(str): The given directory path.
executor(Executor): The executor to run for loading inference model. executor(Executor): The executor to run for loading inference model.
model_filename(str|None): The name of file to load inference program. See :ref:`api_guide_executor_en` for more details about it.
model_filename(str, optional): The name of file to load the inference program.
If it is None, the default filename If it is None, the default filename
'__model__' will be used. ``__model__`` will be used.
Default: None Default: ``None``.
params_filename(str|None): The name of file to load all parameters. params_filename(str, optional): The name of file to load all parameters.
It is only used for the case that all It is only used for the case that all
parameters were saved in a single binary parameters were saved in a single binary
file. If parameters were saved in separate file. If parameters were saved in separate
files, set it as 'None'. files, set it as ``None``.
pserver_endpoints(list|None): This only need by distributed inference. Default: ``None``.
When use distributed look up table in training,
We also need it in inference.The parameter is pserver_endpoints(list, optional): It is only needed by the distributed inference.
If using a distributed look up table during the training,
this table is also needed by the inference process. Its value is
a list of pserver endpoints. a list of pserver endpoints.
Returns: Returns:
tuple: The return of this function is a tuple with three elements: list: The return of this API is a list with three elements:
(program, feed_target_names, fetch_targets). The `program` is a (program, feed_target_names, fetch_targets). The `program` is a
Program, it's the program for inference. The `feed_target_names` is ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
a list of str, it contains Names of variables that need to feed The `feed_target_names` is a list of ``str``, which contains names of variables
data in the inference program. The `fetch_targets` is a list of that need to feed data in the inference program. The `fetch_targets` is a list of
Variable. It contains variables from which we can get inference ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
results. we can get inference results.
Raises: Raises:
ValueError: If `dirname` is not a existing directory. ValueError: If `dirname` is not a existing directory.
...@@ -1199,6 +1211,8 @@ def load_inference_model(dirname, ...@@ -1199,6 +1211,8 @@ def load_inference_model(dirname,
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
# Build the model
main_prog = fluid.Program() main_prog = fluid.Program()
startup_prog = fluid.Program() startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog): with fluid.program_guard(main_prog, startup_prog):
...@@ -1210,30 +1224,36 @@ def load_inference_model(dirname, ...@@ -1210,30 +1224,36 @@ def load_inference_model(dirname,
place = fluid.CPUPlace() place = fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
# Save the inference model
path = "./infer_model" path = "./infer_model"
fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'], fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
target_vars=[hidden_b], executor=exe, main_program=main_prog) target_vars=[hidden_b], executor=exe, main_program=main_prog)
tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
# Demo one. Not need to set the distributed look up table, because the
# training doesn't use a distributed look up table.
[inference_program, feed_target_names, fetch_targets] = ( [inference_program, feed_target_names, fetch_targets] = (
fluid.io.load_inference_model(dirname=path, executor=exe)) fluid.io.load_inference_model(dirname=path, executor=exe))
tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
results = exe.run(inference_program, results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img}, feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets) fetch_list=fetch_targets)
# endpoints is your pserver endpoints list, the above is just an example # Demo two. If the training uses a distributed look up table, the pserver
# endpoints list should be supported when loading the inference model.
# The below is just an example.
endpoints = ["127.0.0.1:2023","127.0.0.1:2024"] endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
# if we need lookup table, we will use:
[dist_inference_program, dist_feed_target_names, dist_fetch_targets] = ( [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
fluid.io.load_inference_model(dirname=path, fluid.io.load_inference_model(dirname=path,
executor=exe, executor=exe,
pserver_endpoints=endpoints)) pserver_endpoints=endpoints))
# In this example, the inference program was saved in the # In this example, the inference program was saved in the file
# "./infer_model/__model__" and parameters were saved in # "./infer_model/__model__" and parameters were saved in
# separate files in "./infer_model". # separate files under the directory "./infer_model".
# After getting inference program, feed target names and # By the inference program, feed_target_names and
# fetch targets, we can use an Executor to run the inference # fetch_targets, we can use an executor to run the inference
# program to get the inference result. # program for getting the inference result.
""" """
load_dirname = os.path.normpath(dirname) load_dirname = os.path.normpath(dirname)
if not os.path.isdir(load_dirname): if not os.path.isdir(load_dirname):
......
...@@ -117,19 +117,51 @@ def shuffle(reader, buf_size): ...@@ -117,19 +117,51 @@ def shuffle(reader, buf_size):
def chain(*readers): def chain(*readers):
""" """
Creates a data reader whose output is the outputs of input data Use the input data readers to create a chained data reader. The new created reader
readers chained together. chains the outputs of input readers together as its output.
If input readers output following data entries: **Note**:
[0, 0, 0] ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
[1, 1, 1] ``paddle.fluid.io.chain`` is recommended to use.
[2, 2, 2]
For example, if three input readers' outputs are as follows:
[0, 0, 0],
[10, 10, 10],
[20, 20, 20].
The chained reader will output: The chained reader will output:
[0, 0, 0, 1, 1, 1, 2, 2, 2] [[0, 0, 0], [10, 10, 10], [20, 20, 20]].
Args:
readers(list): input data readers.
Returns:
callable: the new chained data reader.
Examples:
.. code-block:: python
import paddle
def reader_creator_3(start):
def reader():
for i in range(start, start + 3):
yield [i, i, i]
return reader
c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
for e in c():
print(e)
# Output:
# [0, 0, 0]
# [1, 1, 1]
# [2, 2, 2]
# [10, 10, 10]
# [11, 11, 11]
# [12, 12, 12]
# [20, 20, 20]
# [21, 21, 21]
# [22, 22, 22]
:param readers: input readers.
:return: the new data reader.
:rtype: callable
""" """
def reader(): def reader():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册