Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
289e1818
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
289e1818
编写于
8月 26, 2021
作者:
S
shiyutang
提交者:
GitHub
8月 26, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add roi align op npu (#34973)
* add_roi_align_npu * update * update * update
上级
537cee99
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
318 addition
and
0 deletion
+318
-0
paddle/fluid/operators/roi_align_op_npu.cc
paddle/fluid/operators/roi_align_op_npu.cc
+101
-0
python/paddle/fluid/tests/unittests/npu/test_roi_align_op_npu.py
...paddle/fluid/tests/unittests/npu/test_roi_align_op_npu.py
+217
-0
未找到文件。
paddle/fluid/operators/roi_align_op_npu.cc
0 → 100644
浏览文件 @
289e1818
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
ROIAlignNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
X
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
// (B,C,H,W)
auto
*
ROIs
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ROIs"
);
// (N,4)
auto
*
ROIsNum
=
ctx
.
Input
<
framework
::
Tensor
>
(
"RoisNum"
);
// [0 1 1 2 2 2]
auto
*
Out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
Out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
sample_num
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
aligned
=
ctx
.
Attr
<
bool
>
(
"aligned"
);
auto
roi_end_mode
=
0
;
PADDLE_ENFORCE_EQ
(
aligned
,
false
,
platform
::
errors
::
InvalidArgument
(
"ROIAlignNPU only support Aligned attribute equaled to False"
));
framework
::
NPUAttributeMap
attr_roi
=
{{
"spatial_scale"
,
spatial_scale
},
{
"pooled_height"
,
pooled_height
},
{
"pooled_width"
,
pooled_width
},
{
"sample_num"
,
sample_num
},
{
"roi_end_mode"
,
roi_end_mode
}};
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
// Combine *ROIsNum with ROIs to get new ROIs
// change roisnum's datatype & resize
int
dtype
=
static_cast
<
int
>
(
ConvertToNpuDtype
(
framework
::
proto
::
VarType
::
FP32
));
framework
::
NPUAttributeMap
attr_cast
=
{{
"dst_type"
,
dtype
}};
Tensor
ROIsNum_fp
(
ROIs
->
type
());
ROIsNum_fp
.
Resize
(
framework
::
make_ddim
({
ROIs
->
dims
()[
0
],
1
}));
ROIsNum_fp
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
runner_c
=
NpuOpRunner
(
"Cast"
,
{
*
ROIsNum
},
{
ROIsNum_fp
},
attr_cast
);
runner_c
.
Run
(
stream
);
// concate to make (N, 5)
std
::
vector
<
paddle
::
framework
::
Tensor
>
x_list
;
x_list
.
push_back
(
ROIsNum_fp
);
x_list
.
push_back
(
*
ROIs
);
auto
axis
=
1
;
// output of concate
Tensor
ROIs_N5
(
ROIs
->
type
());
ROIs_N5
.
Resize
(
framework
::
make_ddim
({
ROIs
->
dims
()[
0
],
5
}));
ROIs_N5
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// attribute of concate
auto
EleNum
=
2
;
framework
::
NPUAttributeMap
attr_concat
=
{{
"N"
,
EleNum
},
{
"concat_dim"
,
axis
}};
NpuOpRunner
runner0
;
runner0
.
SetType
(
"ConcatD"
)
.
AddInputs
(
x_list
)
.
AddOutput
(
ROIs_N5
)
.
AddInputNames
({
"x0"
,
"x1"
})
.
AddAttrs
(
attr_concat
);
runner0
.
Run
(
stream
);
const
auto
&
runner
=
NpuOpRunner
(
"ROIAlign"
,
{
*
X
,
ROIs_N5
},
{
*
Out
},
attr_roi
);
runner
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
roi_align
,
ops
::
ROIAlignNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
ROIAlignNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
double
>
,
ops
::
ROIAlignNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
);
python/paddle/fluid/tests/unittests/npu/test_roi_align_op_npu.py
0 → 100644
浏览文件 @
289e1818
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
math
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
paddle
.
enable_static
()
np
.
random
.
seed
(
1243
)
class
TestROIAlignNPUOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_case
()
self
.
make_rois
()
self
.
calc_roi_align
()
seq_len
=
self
.
rois_lod
[
0
]
self
.
inputs
=
{
'X'
:
self
.
x
,
'ROIs'
:
self
.
rois
[:,
1
:
5
],
'RoisNum'
:
np
.
asarray
(
seq_len
).
astype
(
'int32'
)
}
self
.
attrs
=
{
'spatial_scale'
:
self
.
spatial_scale
,
'pooled_height'
:
self
.
pooled_height
,
'pooled_width'
:
self
.
pooled_width
,
'sampling_ratio'
:
self
.
sampling_ratio
,
'aligned'
:
self
.
aligned
}
self
.
outputs
=
{
'Out'
:
self
.
out_data
}
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
channels
=
3
self
.
height
=
8
self
.
width
=
6
# n, c, h, w
self
.
x_dim
=
(
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
)
self
.
spatial_scale
=
1.0
/
2.0
self
.
pooled_height
=
2
self
.
pooled_width
=
2
self
.
sampling_ratio
=
2
self
.
aligned
=
False
self
.
x
=
np
.
random
.
random
(
self
.
x_dim
).
astype
(
'float32'
)
def
pre_calc
(
self
,
x_i
,
roi_xmin
,
roi_ymin
,
roi_bin_grid_h
,
roi_bin_grid_w
,
bin_size_h
,
bin_size_w
):
count
=
roi_bin_grid_h
*
roi_bin_grid_w
bilinear_pos
=
np
.
zeros
(
[
self
.
channels
,
self
.
pooled_height
,
self
.
pooled_width
,
count
,
4
],
np
.
float32
)
bilinear_w
=
np
.
zeros
(
[
self
.
pooled_height
,
self
.
pooled_width
,
count
,
4
],
np
.
float32
)
for
ph
in
range
(
self
.
pooled_width
):
for
pw
in
range
(
self
.
pooled_height
):
c
=
0
for
iy
in
range
(
roi_bin_grid_h
):
y
=
roi_ymin
+
ph
*
bin_size_h
+
(
iy
+
0.5
)
*
\
bin_size_h
/
roi_bin_grid_h
for
ix
in
range
(
roi_bin_grid_w
):
x
=
roi_xmin
+
pw
*
bin_size_w
+
(
ix
+
0.5
)
*
\
bin_size_w
/
roi_bin_grid_w
if
y
<
-
1.0
or
y
>
self
.
height
or
\
x
<
-
1.0
or
x
>
self
.
width
:
continue
if
y
<=
0
:
y
=
0
if
x
<=
0
:
x
=
0
y_low
=
int
(
y
)
x_low
=
int
(
x
)
if
y_low
>=
self
.
height
-
1
:
y
=
y_high
=
y_low
=
self
.
height
-
1
else
:
y_high
=
y_low
+
1
if
x_low
>=
self
.
width
-
1
:
x
=
x_high
=
x_low
=
self
.
width
-
1
else
:
x_high
=
x_low
+
1
ly
=
y
-
y_low
lx
=
x
-
x_low
hy
=
1
-
ly
hx
=
1
-
lx
for
ch
in
range
(
self
.
channels
):
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
0
]
=
x_i
[
ch
,
y_low
,
x_low
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
1
]
=
x_i
[
ch
,
y_low
,
x_high
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
2
]
=
x_i
[
ch
,
y_high
,
x_low
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
3
]
=
x_i
[
ch
,
y_high
,
x_high
]
bilinear_w
[
ph
,
pw
,
c
,
0
]
=
hy
*
hx
bilinear_w
[
ph
,
pw
,
c
,
1
]
=
hy
*
lx
bilinear_w
[
ph
,
pw
,
c
,
2
]
=
ly
*
hx
bilinear_w
[
ph
,
pw
,
c
,
3
]
=
ly
*
lx
c
=
c
+
1
return
bilinear_pos
,
bilinear_w
def
calc_roi_align
(
self
):
self
.
out_data
=
np
.
zeros
(
(
self
.
rois_num
,
self
.
channels
,
self
.
pooled_height
,
self
.
pooled_width
)).
astype
(
'float32'
)
offset
=
0.5
if
self
.
aligned
else
0.
for
i
in
range
(
self
.
rois_num
):
roi
=
self
.
rois
[
i
]
roi_batch_id
=
int
(
roi
[
0
])
x_i
=
self
.
x
[
roi_batch_id
]
roi_xmin
=
roi
[
1
]
*
self
.
spatial_scale
-
offset
roi_ymin
=
roi
[
2
]
*
self
.
spatial_scale
-
offset
roi_xmax
=
roi
[
3
]
*
self
.
spatial_scale
-
offset
roi_ymax
=
roi
[
4
]
*
self
.
spatial_scale
-
offset
roi_width
=
roi_xmax
-
roi_xmin
roi_height
=
roi_ymax
-
roi_ymin
if
not
self
.
aligned
:
roi_width
=
max
(
roi_width
,
1
)
roi_height
=
max
(
roi_height
,
1
)
bin_size_h
=
float
(
roi_height
)
/
float
(
self
.
pooled_height
)
bin_size_w
=
float
(
roi_width
)
/
float
(
self
.
pooled_width
)
roi_bin_grid_h
=
self
.
sampling_ratio
if
self
.
sampling_ratio
>
0
else
\
math
.
ceil
(
roi_height
/
self
.
pooled_height
)
roi_bin_grid_w
=
self
.
sampling_ratio
if
self
.
sampling_ratio
>
0
else
\
math
.
ceil
(
roi_width
/
self
.
pooled_width
)
count
=
max
(
int
(
roi_bin_grid_h
*
roi_bin_grid_w
),
1
)
pre_size
=
count
*
self
.
pooled_width
*
self
.
pooled_height
bilinear_pos
,
bilinear_w
=
self
.
pre_calc
(
x_i
,
roi_xmin
,
roi_ymin
,
int
(
roi_bin_grid_h
),
int
(
roi_bin_grid_w
),
bin_size_h
,
bin_size_w
)
for
ch
in
range
(
self
.
channels
):
align_per_bin
=
(
bilinear_pos
[
ch
]
*
bilinear_w
).
sum
(
axis
=-
1
)
output_val
=
align_per_bin
.
mean
(
axis
=-
1
)
self
.
out_data
[
i
,
ch
,
:,
:]
=
output_val
def
make_rois
(
self
):
rois
=
[]
self
.
rois_lod
=
[[]]
for
bno
in
range
(
self
.
batch_size
):
# for i in range(bno + 1):
self
.
rois_lod
[
0
].
append
(
bno
)
x1
=
np
.
random
.
randint
(
0
,
self
.
width
//
self
.
spatial_scale
-
self
.
pooled_width
)
y1
=
np
.
random
.
randint
(
0
,
self
.
height
//
self
.
spatial_scale
-
self
.
pooled_height
)
x2
=
np
.
random
.
randint
(
x1
+
self
.
pooled_width
,
self
.
width
//
self
.
spatial_scale
)
y2
=
np
.
random
.
randint
(
y1
+
self
.
pooled_height
,
self
.
height
//
self
.
spatial_scale
)
roi
=
[
bno
,
x1
,
y1
,
x2
,
y2
]
rois
.
append
(
roi
)
self
.
rois_num
=
len
(
rois
)
self
.
rois
=
np
.
array
(
rois
).
astype
(
"float32"
)
def
setUp
(
self
):
self
.
op_type
=
"roi_align"
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
set_data
()
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestROIAlignOpWithMinusSample
(
TestROIAlignNPUOp
):
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
channels
=
3
self
.
height
=
8
self
.
width
=
6
# n, c, h, w
self
.
x_dim
=
(
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
)
self
.
spatial_scale
=
1.0
/
2.0
self
.
pooled_height
=
2
self
.
pooled_width
=
2
self
.
sampling_ratio
=
-
1
self
.
aligned
=
False
self
.
x
=
np
.
random
.
random
(
self
.
x_dim
).
astype
(
'float32'
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录