Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
265fd33c
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
265fd33c
编写于
1月 10, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove weight decay ut
test=release/1.2
上级
f04ec6bd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
188 deletion
+0
-188
python/paddle/fluid/tests/unittests/test_weight_decay.py
python/paddle/fluid/tests/unittests/test_weight_decay.py
+0
-188
未找到文件。
python/paddle/fluid/tests/unittests/test_weight_decay.py
已删除
100644 → 0
浏览文件 @
f04ec6bd
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
contextlib
import
unittest
from
functools
import
partial
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
def
get_places
():
places
=
[]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
return
places
@
contextlib
.
contextmanager
def
prog_scope_guard
(
main_prog
,
startup_prog
):
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
yield
def
bow_net
(
data
,
label
,
dict_dim
,
is_sparse
=
False
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
fluid/PaddleNLP/text_classification/nets.py
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
is_sparse
=
is_sparse
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bow_tanh
=
fluid
.
layers
.
tanh
(
bow
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
class
TestWeightDecay
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
reader
=
paddle
.
batch
(
paddle
.
dataset
.
imdb
.
train
(
self
.
word_dict
),
batch_size
=
4
)()
self
.
train_data
=
[
next
(
reader
)
for
_
in
range
(
5
)]
self
.
learning_rate
=
.
5
def
run_executor
(
self
,
place
,
feed_list
,
loss
):
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
main_prog
=
fluid
.
default_main_program
()
loss_set
=
[]
for
data
in
self
.
train_data
:
out
=
exe
.
run
(
main_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
.
name
])
print
(
"loss %s"
%
(
np
.
average
(
out
)))
loss_set
.
append
(
np
.
average
(
out
))
return
loss_set
def
run_parallel_exe
(
self
,
place
,
feed_list
,
loss
,
use_cuda
=
True
,
use_reduce
=
False
,
use_fast_executor
=
False
,
use_ir_memory_optimize
=
False
):
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_list
,
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exec_strategy
=
fluid
.
ExecutionStrategy
()
if
use_fast_executor
:
exec_strategy
.
use_experimental_executor
=
True
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
\
if
use_reduce
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
build_strategy
.
memory_optimize
=
use_ir_memory_optimize
parallel_exe
=
fluid
.
ParallelExecutor
(
use_cuda
,
loss_name
=
loss
.
name
,
exec_strategy
=
exec_strategy
,
build_strategy
=
build_strategy
)
loss_set
=
[]
for
data
in
self
.
train_data
:
out
=
parallel_exe
.
run
(
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
.
name
])
print
(
"loss %s"
%
(
np
.
average
(
out
)))
loss_set
.
append
(
np
.
average
(
out
))
return
loss_set
def
check_weight_decay
(
self
,
place
,
model
,
use_parallel_exe
=
False
,
use_reduce
=
False
):
main_prog
=
fluid
.
framework
.
Program
()
startup_prog
=
fluid
.
framework
.
Program
()
startup_prog
.
random_seed
=
1
with
prog_scope_guard
(
main_prog
=
main_prog
,
startup_prog
=
startup_prog
):
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
avg_cost
=
model
(
data
,
label
,
len
(
self
.
word_dict
))
param_list
=
[(
var
,
var
*
self
.
learning_rate
)
for
var
in
main_prog
.
block
(
0
).
all_parameters
()]
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
self
.
learning_rate
)
optimizer
.
minimize
(
avg_cost
)
for
params
in
param_list
:
updated_p
=
fluid
.
layers
.
elementwise_sub
(
x
=
params
[
0
],
y
=
params
[
1
])
fluid
.
layers
.
assign
(
input
=
updated_p
,
output
=
params
[
0
])
if
use_parallel_exe
:
loss
=
self
.
run_parallel_exe
(
place
,
[
data
,
label
],
loss
=
avg_cost
,
use_cuda
=
True
,
use_reduce
=
use_reduce
)
else
:
loss
=
self
.
run_executor
(
place
,
[
data
,
label
],
loss
=
avg_cost
)
return
loss
def
test_weight_decay
(
self
):
model
=
partial
(
bow_net
,
is_sparse
=
False
)
for
place
in
get_places
():
loss
=
self
.
check_weight_decay
(
place
,
model
,
use_parallel_exe
=
False
)
loss2
=
self
.
check_weight_decay
(
place
,
model
,
use_parallel_exe
=
True
,
use_reduce
=
False
)
for
i
in
range
(
len
(
loss
)):
assert
np
.
isclose
(
a
=
loss
[
i
],
b
=
loss2
[
i
],
rtol
=
5e-5
)
loss3
=
self
.
check_weight_decay
(
place
,
model
,
use_parallel_exe
=
True
,
use_reduce
=
True
)
for
i
in
range
(
len
(
loss
)):
assert
np
.
isclose
(
a
=
loss
[
i
],
b
=
loss3
[
i
],
rtol
=
5e-5
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录