Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
2340ceda
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2340ceda
编写于
9月 13, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add groups in convolution GemmConvGradKernel.
上级
fb46345f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
39 addition
and
29 deletion
+39
-29
paddle/operators/gemm_conv_op.h
paddle/operators/gemm_conv_op.h
+39
-29
未找到文件。
paddle/operators/gemm_conv_op.h
浏览文件 @
2340ceda
...
...
@@ -82,19 +82,16 @@ class GemmConvKernel : public framework::OpKernel {
int
in_step
=
input_channels
/
groups
;
int
out_step
=
output_channels
/
groups
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_slice_batch
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_slice_batch
=
output
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
Tensor
in_batch
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
// im2col
Tensor
in_slice
=
in_slice_batch
.
Slice
<
T
>
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
Tensor
in_slice
=
in_batch
.
Slice
<
T
>
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
// gemm
Tensor
out_slice
=
out_slice_batch
.
Slice
<
T
>
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
out_slice
=
out_batch
.
Slice
<
T
>
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
<
T
>
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
filter_slice
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
out_slice
,
T
(
0.0
),
device_context
);
...
...
@@ -125,12 +122,13 @@ class GemmConvGradKernel : public framework::OpKernel {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
//
int groups = context.Attr<int>("groups");
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
int
batch_size
=
input
->
dims
()[
0
];
int
input_channels
=
input
->
dims
()[
1
];
int
filter_height
=
filter
.
dims
()[
filter
.
dims
().
size
()
-
2
];
int
filter_width
=
filter
.
dims
()[
filter
.
dims
().
size
()
-
1
];
int
output_channels
=
output_grad
->
dims
()[
1
];
int
output_height
=
output_grad
->
dims
()[
2
];
int
output_width
=
output_grad
->
dims
()[
3
];
...
...
@@ -141,11 +139,11 @@ class GemmConvGradKernel : public framework::OpKernel {
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
// use col_shape in the im2col and col2im calculation
framework
::
DDim
col_shape
=
{
input_channels
,
filter_height
,
filter_width
,
output_height
,
output_width
};
framework
::
DDim
col_shape
=
{
input_channels
/
groups
,
filter_height
,
filter_width
,
output_height
,
output_width
};
// use col_matrix_shape in the gemm calculation
framework
::
DDim
col_matrix_shape
=
{
input_channels
*
filter_height
*
filter_width
,
input_channels
/
groups
*
filter_height
*
filter_width
,
output_height
*
output_width
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
...
@@ -176,26 +174,38 @@ class GemmConvGradKernel : public framework::OpKernel {
// convolution backward input operator: gemm + col2im
// convolution backward weight operator: im2col + gemm
int
in_step
=
input_channels
/
groups
;
int
out_step
=
output_channels
/
groups
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// gemm
Tensor
out_slice
=
Tensor
out_grad_batch
=
output_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
math
::
matmul
<
Place
,
T
>
(
filter
,
true
,
out_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
),
device_context
);
// col2im
Tensor
in_grad_slice
=
input_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
col2im
(
in_grad_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
// im2col
Tensor
in_slice
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
// gemm
math
::
matmul
<
Place
,
T
>
(
out_slice
,
false
,
col_matrix
,
true
,
T
(
1.0
),
&
filter_grad
,
T
(
1.0
),
device_context
);
Tensor
in_grad_batch
=
input_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
in_batch
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
// gemm
Tensor
out_grad_slice
=
out_grad_batch
.
Slice
<
T
>
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
<
T
>
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
filter_slice
,
true
,
out_grad_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
),
device_context
);
// col2im
Tensor
in_grad_slice
=
in_grad_batch
.
Slice
<
T
>
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
col2im
(
in_grad_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
// im2col
Tensor
in_slice
=
in_batch
.
Slice
<
T
>
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
im2col
(
in_slice
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
device_context
);
// gemm
Tensor
filter_grad_slice
=
filter_grad
.
Slice
<
T
>
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
Place
,
T
>
(
out_grad_slice
,
false
,
col_matrix
,
true
,
T
(
1.0
),
&
filter_grad_slice
,
T
(
1.0
),
device_context
);
}
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录