Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1f6394af
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1f6394af
编写于
6月 25, 2019
作者:
H
hutuxian
提交者:
GitHub
6月 25, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick: add api desc for pipeline training (#18293) (#18304)
cherry-pick for #18293
上级
45bd5898
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
55 addition
and
0 deletion
+55
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+55
-0
未找到文件。
python/paddle/fluid/optimizer.py
浏览文件 @
1f6394af
...
...
@@ -2640,6 +2640,61 @@ class ExponentialMovingAverage(object):
class
PipelineOptimizer
(
object
):
"""
Pipeline Optimizer
Train with pipeline mode. The program will be splited by cut_list.
If the len of cut_list is k, then the whole program (including
backward part) will be splited to 2*k-1 sections. So the length of place_list
and concurrency_list must be also 2*k-1.
Note: Though the asynchronous mode is applied in pipeline training to speed up,
the final performance depends on the training progress of each pipeline heavily.
And we will try the synchronous mode in the future
Args:
optimizer (Optimizer): The based optimizer, such as SGD
cut_list (list of Variable list): The cut variable of the main_program
place_list (list of Place): The place where the section will run on
concurrency_list (list of int): The concurrency degree
queue_size (int): Each section will consume scopes from its in-scope queue
and produce scopes to out-scope queue. And this parameter
specify the scope queue size. [Optional. Default: 30]
sync_steps (int): The synchronization steps between different cards. [Optional. Default: 1]
start_cpu_core_id (int): specify the first cpu core id. [Optional. Default:0]
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)
concat = layers.concat([emb_x, emb_y], axis=1)
fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
loss = layers.reduce_mean(fc)
optimizer = fluid.optimizer.SGD(learning_rate=0.5)
optimizer = fluid.optimizer.PipelineOptimizer(optimizer,
cut_list=[[emb_x, emb_y], [loss]],
place_list=[fluid.CPUPlace(), fluid.CUDAPlace(0), fluid.CPUPlace()],
concurrency_list=[1, 1, 4],
queue_size=2,
sync_steps=1,
)
optimizer.minimize(loss)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
dataset.set_use_var([x,y])
dataset.set_batch_size(batch_size)
dataset.set_filelist(filelist)
exe.train_from_dataset(
fluid.default_main_program(),
dataset,
thread=2,
debug=False,
fetch_list=[],
fetch_info=[],
print_period=1)
"""
def
__init__
(
self
,
optimizer
,
cut_list
=
None
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录