Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1eac2763
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1eac2763
编写于
12月 17, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add spp avg
上级
ea093283
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
51 addition
and
11 deletion
+51
-11
paddle/operators/spp_op.cc
paddle/operators/spp_op.cc
+5
-0
paddle/operators/spp_op.h
paddle/operators/spp_op.h
+27
-7
python/paddle/v2/fluid/tests/test_spp_op.py
python/paddle/v2/fluid/tests/test_spp_op.py
+19
-4
未找到文件。
paddle/operators/spp_op.cc
浏览文件 @
1eac2763
...
@@ -30,6 +30,11 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -30,6 +30,11 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
"N * M."
"N * M."
"M = C * H * W"
);
"M = C * H * W"
);
AddAttr
<
int
>
(
"pyramid_height"
,
"(int), multi level pooling"
);
AddAttr
<
int
>
(
"pyramid_height"
,
"(int), multi level pooling"
);
AddAttr
<
std
::
string
>
(
"pooling_type"
,
"(string), pooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
"With spatial pyramid pooling, the input image can
"With spatial pyramid pooling, the input image can
be of any sizes. This not only allows arbitrary aspect
be of any sizes. This not only allows arbitrary aspect
...
...
paddle/operators/spp_op.h
浏览文件 @
1eac2763
...
@@ -27,6 +27,8 @@ class SppKernel : public framework::OpKernel<T> {
...
@@ -27,6 +27,8 @@ class SppKernel : public framework::OpKernel<T> {
const
framework
::
Tensor
*
in_x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
framework
::
Tensor
*
in_x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
int
pyramid_height
=
context
.
template
Attr
<
int
>(
"pyramid_height"
);
int
pyramid_height
=
context
.
template
Attr
<
int
>(
"pyramid_height"
);
std
::
string
pooling_type
=
context
.
template
Attr
<
std
::
string
>(
"pooling_type"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
int
input_h
=
in_x
->
dims
()[
2
];
int
input_h
=
in_x
->
dims
()[
2
];
...
@@ -48,10 +50,17 @@ class SppKernel : public framework::OpKernel<T> {
...
@@ -48,10 +50,17 @@ class SppKernel : public framework::OpKernel<T> {
framework
::
DDim
output_shape
(
framework
::
make_ddim
(
output_shape_vec
));
framework
::
DDim
output_shape
(
framework
::
make_ddim
(
output_shape_vec
));
out_level
.
mutable_data
<
T
>
(
output_shape
,
context
.
GetPlace
());
out_level
.
mutable_data
<
T
>
(
output_shape
,
context
.
GetPlace
());
// pooling
// pooling
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
if
(
pooling_type
==
"max"
)
{
math
::
MaxPool
<
T
>
max_process
;
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
math
::
MaxPool
<
T
>
max_process
;
kernel_size
,
strides
,
paddings
,
max_process
,
&
out_level
);
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
kernel_size
,
strides
,
paddings
,
max_process
,
&
out_level
);
}
else
if
(
pooling_type
==
"avg"
)
{
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
AvgPool
<
T
>
,
T
>
pool_forward
;
math
::
AvgPool
<
T
>
avg_process
;
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
kernel_size
,
strides
,
paddings
,
avg_process
,
&
out_level
);
}
// flatten pooling output shape
// flatten pooling output shape
int
output_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
int
output_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
std
::
vector
<
int64_t
>
output_flatten_shape_vec
(
std
::
vector
<
int64_t
>
output_flatten_shape_vec
(
...
@@ -79,6 +88,8 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -79,6 +88,8 @@ class SppGradKernel : public framework::OpKernel<T> {
framework
::
Tensor
*
in_x_grad
=
framework
::
Tensor
*
in_x_grad
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
pyramid_height
=
context
.
template
Attr
<
int
>(
"pyramid_height"
);
int
pyramid_height
=
context
.
template
Attr
<
int
>(
"pyramid_height"
);
std
::
string
pooling_type
=
context
.
template
Attr
<
std
::
string
>(
"pooling_type"
);
auto
&
device_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
device_ctx
=
context
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
@@ -130,10 +141,19 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -130,10 +141,19 @@ class SppGradKernel : public framework::OpKernel<T> {
outgrad_level
.
ShareDataWith
(
outgrad_level
);
outgrad_level
.
ShareDataWith
(
outgrad_level
);
outgrad_level
.
Resize
(
out_shape
);
outgrad_level
.
Resize
(
out_shape
);
// pooling backward
// pooling backward
math
::
MaxPool2dGradFunctor
<
DeviceContext
,
T
>
pool2d_backward
;
if
(
pooling_type
==
"max"
)
{
pool2d_backward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
math
::
MaxPool2dGradFunctor
<
DeviceContext
,
T
>
pool2d_backward
;
pool2d_backward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
*&
out_level
,
*&
outgrad_level
,
kernel_size
,
strides
,
paddings
,
in_x_grad
);
}
else
if
(
pooling_type
==
"avg"
)
{
math
::
Pool2dGradFunctor
<
DeviceContext
,
math
::
AvgPoolGrad
<
T
>
,
T
>
pool_backward
;
math
::
AvgPoolGrad
<
T
>
avg_process
;
pool_backward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
*&
out_level
,
*&
outgrad_level
,
kernel_size
,
strides
,
*&
out_level
,
*&
outgrad_level
,
kernel_size
,
strides
,
paddings
,
in_x_grad
);
paddings
,
avg_process
,
in_x_grad
);
}
}
}
}
}
};
};
...
...
python/paddle/v2/fluid/tests/test_spp_op.py
浏览文件 @
1eac2763
...
@@ -2,6 +2,7 @@ import unittest
...
@@ -2,6 +2,7 @@ import unittest
import
numpy
as
np
import
numpy
as
np
from
op_test
import
OpTest
from
op_test
import
OpTest
from
test_pool2d_op
import
max_pool2D_forward_naive
from
test_pool2d_op
import
max_pool2D_forward_naive
from
test_pool2d_op
import
avg_pool2D_forward_naive
class
TestSppOp
(
OpTest
):
class
TestSppOp
(
OpTest
):
...
@@ -24,8 +25,8 @@ class TestSppOp(OpTest):
...
@@ -24,8 +25,8 @@ class TestSppOp(OpTest):
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
padding
[
1
]
=
(
padding
[
1
]
=
(
(
kernel_size
[
1
]
*
bins
-
wsize
+
1
)
/
2
).
astype
(
"int32"
)
(
kernel_size
[
1
]
*
bins
-
wsize
+
1
)
/
2
).
astype
(
"int32"
)
out_level
=
max_
pool2D_forward_naive
(
input
,
kernel_size
,
out_level
=
self
.
pool2D_forward_naive
(
input
,
kernel_size
,
kernel_size
,
padding
)
kernel_size
,
padding
)
out_level_flatten
.
append
(
out_level_flatten
.
append
(
out_level
.
reshape
(
nsize
,
bins
*
bins
*
csize
))
out_level
.
reshape
(
nsize
,
bins
*
bins
*
csize
))
if
i
==
0
:
if
i
==
0
:
...
@@ -34,7 +35,10 @@ class TestSppOp(OpTest):
...
@@ -34,7 +35,10 @@ class TestSppOp(OpTest):
output
=
np
.
concatenate
((
output
,
out_level_flatten
[
i
]),
1
)
output
=
np
.
concatenate
((
output
,
out_level_flatten
[
i
]),
1
)
# output = np.concatenate(out_level_flatten.tolist(), 0);
# output = np.concatenate(out_level_flatten.tolist(), 0);
self
.
inputs
=
{
'X'
:
input
.
astype
(
'float32'
),
}
self
.
inputs
=
{
'X'
:
input
.
astype
(
'float32'
),
}
self
.
attrs
=
{
'pyramid_height'
:
self
.
pyramid_height
}
self
.
attrs
=
{
'pyramid_height'
:
self
.
pyramid_height
,
'pooling_type'
:
self
.
pool_type
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
...
@@ -42,11 +46,22 @@ class TestSppOp(OpTest):
...
@@ -42,11 +46,22 @@ class TestSppOp(OpTest):
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.05
)
if
self
.
pool_type
!=
"avg"
:
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.05
)
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
shape
=
[
3
,
2
,
4
,
4
]
self
.
shape
=
[
3
,
2
,
4
,
4
]
self
.
pyramid_height
=
3
self
.
pyramid_height
=
3
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
self
.
pool_type
=
"max"
class
TestCase2
(
TestSppOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
3
,
2
,
4
,
4
]
self
.
pyramid_height
=
3
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
self
.
pool_type
=
"avg"
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录